BCH370 Physical Methods in Biochemistry

Introduction:
Marv Hackert - WEL 5.266B Tu 1-2; F 10:30-11:30 (Main 101)

Ashley Jewett - WEL 4.238 M 10-11; W 5-6

Course grades will be based on points earned out of 480 total points.

$$
\begin{array}{lll}
\text { Exam 1, Exam 2, Exam 3: } \quad 100 \text { pts each } & =300 \text { pts } \\
\text { Blast Assignment: } & 60 \text { pts } & =60 \text { pts } \\
\text { Graded Homework 1, 2, 3: } \quad 20 \text { pts each } & =60 \text { pts (due 8:00 am) } \\
\text { Term Paper / Special Assignment: } 60 \text { pts each } & =60 \text { pts }
\end{array}
$$

http://hackert.cm.utexas.edu/courses/bch370/fall2014/

International Union of Crystallography - EC

Back row: M Cooper, M Dacombe, M Guss, R Kuzel, M Takata, W Depmeier, S Gracia-Granda Front row: H Dabkowska, L Van Meervelt, M Hackert, M Glazer, G Desiraju

IUCr - promotes all aspects of crystallography, international publication of crystallographic research (Acta Cryst. A \rightarrow F), facilitates standardization of methods, units, nomenclatures and symbols, sponsors education and training, international meetings.

Review of Amino Acids \& Peptide:

Goals for this review unit:

1. Review meaning of pKa / titration behavior
2. Recognize the common building blocks of amino acids

- recognize structures

3. Nomenclature - names / 3-letter \& 1-letter abbrev.
4. Ionic properties of a.a. - pKa (know pKa's of 20 common a.a.)
5. Peptides and the Peptide bond
6. Ionic properties of peptides and proteins
K_{a} and $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ describe how completely a weak acid dissociates.

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]} \\
\mathrm{pK}_{\mathrm{a}} & =-\log _{10} \mathrm{~K}_{\mathrm{a}}
\end{aligned}
$$

The pK_{a} of a weak acid is the pH at which $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$

Example: acetic acid has a pKa of 4.7

$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

So, in a solution of acetic acid at pH 4.7 ,
$\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$are present in equal amounts.

The Henderson-Hasselbalch equation describes how much of a weak acid is ionized at a particular pH :

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{\text { [conjugate base] }}{[\text { acid }]}
$$

The Henderson-Hasselbalch equation says: A change of one pH unit changes the ratio of acid to conjugate base by a factor of ten.

pH	Ratio $\left[\mathrm{CH}_{3} \mathrm{COOH}\right] /\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
3.7	$[10] /[1]$
4.7	$[1] /[1]$
5.7	$[1] /[10]$

200 3E Fig 0307 r307
stost JKM 02177/5e C M K

Some pK_{a} values that every biochemist should know:
carboxyl group:
amine:
pKa typically about 2
pKa typically about 10
pK_{a} values for some amino acid side chains:

Asp \& Glu
Lysine
Arginine
Tyrosine -OH
Cysteine -SH
pK_{a} is about 8.3
pK_{a} is about 6

First regular course topic:
"Our friends the amino acids".

One letter abbreviation, 3 letter abbreviation, properties, structure.

" R " group is different, depending on a.a. type.

Amino acids are chiral.

RS system of classifying enantiomers (Cahn-Ingold Prelog, or CIP system, established in 1960's).

$1=$ highest priority group (based on atomic \# of attached substituents)
With lowest priority group pointing away from observer, decreasing priority of other 3 substituents goes in clockwise direction for R enantiomer.

Example: Alanine found in proteins is the S enantiomer.

Jmol
alanine
Note: Amino acid enantiomers are often classified by the "DL" system, from the 1890's. The amino acids normally found in proteins are "L-amino acids". For example, "L-alanine".

A few words about each of the 20 common amino acids.

Charged amino acids - Negative

Aspartic acid (Asp, D)
Glutamic acid (Glu, E)

Asp \& Glu
pK_{a} is about 4

Histidine side chain at $\mathrm{pH}<6$.

Histidine ring $\quad \mathrm{pK}_{\mathrm{a}}$ is about 6

Histidine side chain at $\mathrm{pH}>7$.

Tautomer of histidine can be identified from hydrogen bonding network in well-ordered crystal structures.

Both histidine tautomers have been observed in crystal structures.

Amino acids - Hydrophilic

Serine, threonine, glutamine, asparagine - can form H -bonds with water.

threonine (Thr, T)

glutamine (Gln, Q)

Other (moderately) hydrophobic amino acids

Tyrosine (Tyr, Y)

Tryptophan (Trp, W)

Tyrosine -OH $\quad \mathrm{PK}_{a}$ is about 10

.... and glycine

Glycine (Gly, G)

Linkage of amino acids in a protein.

Nomenclature

Chemistry of the peptide bond

This image was created by Dr. George Helmkamp, Jr. (UKMC)

Conformation of a polypeptide

ϕ - rotation around the $\mathrm{N}-\mathrm{C}_{\alpha}$ bond ψ - rotation around the $C_{\alpha}-C$ bond

Planar units within peptides are relatively rigid due to partial double bond character of $\mathrm{C}-\mathrm{N}$ bond.

Peptide bonds can be cis or trans, but within proteins are almost always trans.
trans

Describe the charges on a tripeptide with sequence:

$$
\text { Ala-Lys-Cys } \quad \text { at } \mathrm{pH}=7
$$

At what pH would this tripeptide have a charge of zero?
(this is the "isoelectric point" of the peptide)
http://web.expasy.org/compute pi/

Some pK_{a} values that every biochemist should know:
carboxyl group:
amine:
pKa typically about 2
pKa typically about 10
pK_{a} values for some amino acid side chains:

Asp \& Glu
Lysine
Arginine
Tyrosine -OH
Cysteine -SH
pK_{a} is about 8.3
pK_{a} is about 6

Primary, secondary, tertiary structure of proteins.

Primary structure is just the a.a. sequence.
Secondary structure describes which parts of the protein are helices, beta strands, turns.

Tertiary structure describes 3-D fold.

