Light Scattering

STATIC Light Scattering
 Also known as Rayleigh or Classical Light Scattering

Measures avg. intensity of scattered light for
Absolute Molecular Weight (r_{g} Radius of Gyration)

Light Scattering (DLS)
Also known as Quasi-elastic Light Scattering (QUELS) or Photon Correlation Spectroscopy (PCS)

Measures microsecond fluctuations of single photons Hydrodynamic Radius ($\mathbf{R}_{\underline{h}}$ Size)
M.L.Hackert (with figures from Precesion Detectors and Wyatt Tech.) and http://info.med.yale.edu/wmkeck/biophysics

Define "Raleigh Ratio" as $R_{\theta}=\left(i_{\theta} / I_{\theta}\right)\left(r^{2} /\left(1+\cos ^{2} \theta\right)\right)$, and thus

$$
\mathrm{R}_{\theta}=\left[2 \mathrm{p}^{2} \mathrm{n}_{0}^{2}(\mathrm{dn} / \mathrm{dC})^{2} / I^{4} N^{0}\right] C M \text {, or }
$$

$$
\mathrm{R}_{\theta}=K C M .
$$

Note: Different experimental methods yield different types of experimentally arrived at "Molecular Weights." Light scattering yields a "weight average" molar mass- solutions must be scrupulously clean since dust will contribute to average as very large molecules.

		$\Sigma C_{i} M_{i}{ }^{\mathrm{y}} / \Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}{ }^{\mathrm{y}-1}$		
Number Average $\boldsymbol{M}_{\boldsymbol{n}}$	$\Sigma \mathbf{N}_{\mathbf{i}} \mathrm{M}_{\mathrm{i}} / \boldsymbol{\Sigma} \mathbf{N}_{\mathbf{i}}$	$\Sigma \mathrm{C}_{\mathrm{i}} / \Sigma\left(\mathrm{C}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}}\right)$	$y=0$	Osmotic Press / F.Pt.
Weight Average M_{w}	$\Sigma N_{i} M_{i}{ }^{\mathbf{2}} / \Sigma N_{i} M_{i}$	$\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} / \Sigma \mathrm{C}_{\mathrm{i}}$	$y=1$	Light Scatt. / Sed. Eq.
"Z" Average M_{Z}	$\Sigma \mathrm{N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}{ }^{\mathbf{~}} / \Sigma \mathrm{N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}{ }^{\mathbf{2}}$	$\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{2} / \Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$y=2$	Sedimentation Equil.

($\mathrm{Mw} / \mathrm{Mn}$) Polydispersity

		$\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{\mathrm{y}} / \Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{\mathrm{y}-1}$		
Number Average \boldsymbol{M}_{n}	$\Sigma \mathrm{~N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} / \Sigma \mathrm{N}_{\mathrm{i}}$	$\Sigma \mathrm{C}_{\mathrm{i}} / \Sigma\left(\mathrm{C}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}}\right)$	$\mathrm{y}=0$	Osmotic Press / F.Pt.
Weight Average $\boldsymbol{M}_{\boldsymbol{w}}$	$\Sigma \mathrm{N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{\mathbf{2}} / \Sigma \mathrm{N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} / \Sigma \mathrm{C}_{\mathrm{i}}$	$\mathrm{y}=1$	Light Scatt. / Sed. Eq.
"Z" Average $\boldsymbol{M}_{\boldsymbol{Z}}$	$\Sigma \mathrm{N}_{\mathrm{i}} \mathbf{M}_{\mathrm{i}}^{\mathbf{3}} / \Sigma \mathrm{N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{2}$	$\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{2} / \Sigma \mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$	$\mathrm{y}=2$	Sedimentation Equil.

Examples:

Sample 1-98\% major component $\mathbf{M}=\mathbf{3 0 , 0 0 0}+\mathbf{2 \%}$ dimer M ~ 60,000

$$
\begin{aligned}
& M n= {[98(30,000)+2(60,000)] / 98+2=(2,940,000+120,000) / 100=30,600 } \\
& M w= {\left[98(30,000)^{2}+2(60,000)^{2}\right] /(98(30,000)+2(60,000)=} \\
&(88,200,000,000+7,200,000,000) /(2,940,000+120,000)= \\
& 95,400,000,000 / 3,060,000=31,176 \\
&(\mathrm{Mw} / \mathrm{Mn}) \quad \text { Polydispersity }=31,176 / 30,600=1.02
\end{aligned}
$$

Sample 2-98\% major component $M=30,000+2 \%$ aggregate M ~ 600,000

$$
\begin{gathered}
M n=[98(30,000)+2(600,000)] / 98+2=(2,940,000+1,200,000) / 100=41,400 \\
M w=\left[98(30,000)^{2}+2(600,000)^{2}\right] /(98(30,000)+2(600,000)= \\
(88,200,000,000+720,000,000,000) /(2,940,000+1,200,000)= \\
808,200,000,000 / 4,140,000=195,217
\end{gathered}
$$

```
(Mw/Mn) Polydispersity = 195,217 / 41,400=4.72
```

How it can be used to characterize a protein sample?

Static LS can easily detect aggregates

Light Scattering Signal $\quad R(\Theta) \sim M w^{*} c$
because of their big Mw, aggregates scatter strongly

Angular variation of the scattered light is related to the size of the molecule
the light scattering signal from aggregates will show angular dependence, while LS signal produces by lower order oligomers like monomers, dimers et c. will not

Protein K: octamer $8 \times 16.3 \mathrm{kDa}=130 \mathrm{kDa}$
$M w=137 \mathrm{kDa}$
Polydispersity $M w / M n \quad 1.01$
98.9 \% at 133 kDa

Concentration at apex $=0.09 \mathrm{mg} / \mathrm{mL}$
Strip Chart - K_093005a_01_P_N

Protein K: octamer $8 \times 16.3 \mathrm{kDa}=130 \mathrm{kDa}$

$M w=141 \mathrm{kDa}$
Polydispersity Mw/Mn 1.05
Concentration at apex $=0.5 \mathrm{mg} / \mathrm{mL}$
0.3\% 0.5-100 MDa

Feature detected in a batch mode LS measurements for sample containing aggregates

- Static (classical)
- Dynamic (quasielastic)

Aggregates present:

- elevated weight average Molar Mass (M_{w} weight average)
- angular dependence in scattered light

Aggregates present:

- autocorrelation function cannot be described by single exponential (cumulant fit)

Missing information: how much and what size?

Feature detected in a batch mode LS measurements for sample containing aggregates

- Static (classical)

Aggregates present:

- elevated weight average Molar Mass (M_{w} weight average)
- angular dependence in scattered light
- Dynamic (quasielastic)

Aggregates present:

- autocorrelation function cannot be described by single exponential (cumulant fit)

Missing information: how much and what size?

- Fractionate sample
- Combine LS measurement with SEC (size excludion chromotography)

http://info.med.yale.edu/wmkeck/biophysics

Three Detector monitoring

http://info.med.yale.edu/wmkeck/biophysics

88\% monomer

Ovalbumin 43 kDa

1.5% trimer
3\% aggregates < 1MDa
0.4\% 1-100 MDa

Zimm Plot Ovalbumin (43 kDa)

http://info.med.yale.edu/wmkeck/biophysics

Zimm Plot Ovalbumin (43 kDa)

http://info.med.yale.edu/wmkeck/biophysics

Light Scattering Experiments

- Static (classical)

time-averaged
 intensity of
 scattered light

- Dynamic
(quasielastic)
fluctuation of intensity of scattered light with time

Parameters derived:

- D_{T} translation diffusion coefficient
- $\quad R_{h}$ hydrodynamic radius (Stokes radius)

Uncertainty of $\sim 10 \%$ for monodisperse sample
http://info.med.yale.edu/wmkeck/biophysics

