"Ligand" Binding

"The secret of life is molecular recognition; the ability of one molecule to "recognize" another through weak bonding interactions."
Linus Pauling at the 25th anniversary of the Institute of Molecular Biology at the University of Oregon

Binding is the first step necessary for a biological response. Before macromolecules can perform a function, they normally must interact with a specific ligand. In some cases like myoglobin, binding and subsequent release of the ligand might be the sole function of the macromolecule. To understanding binding, we must consider the equilbria involved, how binding is affected by ligand and macromolecule concentration, and how to experimentally analyze and interpret binding data and binding curves.

Hackert - CH370

Manipulations of Equations

a) double reciprocal plot

$$
1 / \theta=K_{d} /[S]+1 \text {; plot } 1 / \theta \text { vs. } 1 /[S]
$$

b) Scatchard Plot: $\theta=[\mathrm{S}] /\left(\mathrm{K}_{\mathrm{d}}+[\mathrm{S}]\right)$ or

$$
\begin{aligned}
& \theta \mathbf{K}_{\mathrm{d}}+\theta[\mathbf{S}]=[\mathbf{S}] \text { or } \theta=\mathbf{1 - \theta K _ { d } / [\mathbf { S }]} \\
& \text { plot } \theta \text { vs. } \theta /[\mathbf{S}] \text { slope }=-\mathbf{K}_{\mathrm{d}}
\end{aligned}
$$

Linearized forms of the equation:

$$
\begin{aligned}
& \text { a) Double Reciprocal Plot } \\
& \begin{array}{|l|l}
1 / \theta=\frac{[S]+K_{d}}{[S]}=1+\frac{K_{2}}{[S]} & \text { b) Scatchard Plot } \\
\text { Or for multiple sites: } & \theta=1-\frac{\theta K_{d}}{[S]} \\
1 / v=\frac{[S]+K_{e}}{[S]}=n+\frac{K_{2}}{[S]} & \theta=n-\frac{v K_{d}}{[S]} \\
& v=\frac{\text { moles bound }}{\text { mole } E}=n \theta
\end{array}
\end{aligned}
$$

EXPERIMENTAL DETERMINATION OF Kd

TECHNIQUES THAT REQUIRE SEPARATION OF BOUND FROM FREE LIGAND - Care must be given to ensure that the equilibrium of $M+L<==>$ ML is not shifted during the separation technique.

- gel filration chromatography - Add \mathbf{M} to a given concentration of L. Then elute the mixture on a gel filtration column, eluting with the free ligand at the same concentration. The ML complex will elute first and can be quantitated. If you measure the free ligand coming off the column, it will be constant after the ML elutes with the exception of a single dip near where the free L would elute if the column was eluted without free L in the buffer solution. This dip represents the amount of ligand bound by M .
-membrane filtration - Add M to radiolableled L, equilibrate, and then filter through a filter which binds M and ML. For instance, a nitrocellulose membrane binds proteins irreversibly. Determine the amount of radiolabeled L on the membrane which equals [ML].
-precipitation - Add a precipitating agent like ammonium sulfate, which precipitates proteins and hence both M and ML. Determine the amount of ML.

EXPERIMENTAL DETERMINATION OF Kd

TECH．THAT DO NOT REQUIRE SEPARATION OF BOUND FROM FREE LIGAND －equilibrium dialysis－Place M in a dialysis bag and dialyse against a solution containing a ligand whose concentration can be determined using radioisotopic or spectroscopic techniques．At equilibrium，determine free L by sampling the solution surrounding the bag．By mass balance，determine the amount of bound ligand，which for a 1：1 stoichiometry gives ML．Repeat at different ligand concentrations．
－gel shift assay－Use autoradiography and gel electrophoresis with radiolabeledmacromolecule．
－spectroscopy－Find a ligand whose absorbance or fluorescence spectra changes when bound to M ．
Alternatively，monitor a group on M whose absorbance or fluorescence spectra changes when bound to L ．

At equilibrium，determine free［ L ］by sampling the solution on side ＂B＂and total［ L ］form side＂A＂．By mass balance，determine the amount of bound ligand．Repeat at different ligand concentrations．

Multi－Equilibrium Dialyzer－

：Smintiv Noter

The dialyzer cells are made of Teflon，an extremety inert material，and will not interfere with the samples．Multiple cell interfere with the samples．Multipte cell systems are available（ $5,10,15,20$ cels） $5.0 \mathrm{ml})$ ．The unit can be sterilized ty auto claving and the cells can be filled eailly with a filling clamp．

Micro－Equilibrium Dialyzer＂（Continued）

Wero fiplitum Duyme			
Whase per chumber to	Total varme（4）	Cis．ofl 1	Coyeds
3	50	（1884606	蔦76160
so	190	WB 74－1500	M3 74－1601
160	200	M8 74．4000	［837402
250	500	WB 74160	Me 74163
56	1500	WB 141648	M83464
abtyonal Camben for 3－6amber 3ytum			
25	－	W8 74.159	（1836429
50	－	W8 $74 / 4611$	4876．1615
160	－	NB 741612	\％876456
250	－	M8741518	戒76147
560	－	MB 141514	馬7615

Utrotin Muntroms har Mere Equitorime Dibywr		
Membrase VWen（anllems）	Oby，cif 24	Cis，of ${ }^{\text {ct }}$
Fer Use with 2s， 50 md 1 lepplvenes Chumbers		
5.000	M834184	WE 74790
18.000	M87405	แ8＞1）

Plate Rotator

A Plate Rotator with variable rotation rates is available for use with Harvard/AmiKa's Equillbrium Dialyzer-96". The Rotator speeds up the equilibrium dialysis process by keeping the sample in constant motion ensuring higher reproducibility of results.

Gel Shift Assay

from van Holde, Johnson - p. 597

Figure 15.3 Gel shift assay for the binding of histone H1 to a cross-sbaped DNA molecule. The DNA (D) has been radiolaheled and the gel subjected to autoradiography: The data represent a titration of a fixed amount of DNA with increasing amounts of the protein. Note that a single complex (C) is formed in this case. [Courtesy of Dr. Jordanka Zlatanova.]

Spectroscopy

Fluorescence Spectroscopy

$$
\begin{array}{ll}
F=F_{s}+\Delta F \cdot \theta & \text { : This equation nomalizes the observable signal to a } \\
\text { where } \Delta F=F_{0}-F_{0} & \text { scale that can be related to fractional occupancy, } \theta \text {. } \\
\text { and } \theta \text { is defined by cither: } & \\
\theta=\frac{[S]_{0}}{K_{i}+[S]_{0}} \quad \text { OR..... } & \theta=\frac{\left(E_{0}+S_{0}+K_{d}\right)-\sqrt{\left(E_{0}+S_{0}+K_{j}\right)^{2}-4 \cdot E_{0} \cdot S_{0}}}{2 \cdot E_{e}}
\end{array}
$$

Fluorescence Anisotropy
Definition of fluorescence
anisotropy r

$$
r=\frac{I_{\mathrm{II}}-I_{\perp}}{I_{\mathrm{II}}+2 I_{\perp}} \quad \theta=\frac{\left[P_{\mathrm{tot}}\right]}{\left[P_{\mathrm{tot}}\right]+K_{D}}=\frac{r_{\text {measured }}-r_{\min }}{r_{\max }-r_{\min }}
$$

How to measure binding of a protein to DNA?
One possibility is to use fluorescence anisotropy

Analysis of binding of RNAP $\cdot \sigma^{54}$ to a promoter DNA sequence by measurements of fluorescence anisotropy

$$
\theta=\frac{\left[P_{\text {oto }}\right]}{\left[P_{\text {tod }}\right]+K_{D}}=\frac{r_{\text {measured }}-r_{\text {min }}}{r_{\text {max }}-r_{\text {min }}}
$$

$+$

free DNA with a fluorophore with high rotational diffusion -> low fluorescence anisotropy $r_{\text {min }}$

RNAP-DNA complex with low rotational diffusion -> high fluorescence anisotropy $r_{\text {max }}$

EXPERIMENTAL DETERMINATION OF Kd

tech. that do not require separation of bound from free ligand

- Equilibrium dialysis - Place \mathbf{M} in a dialysis bag and dialyse against a solution containing a ligand whose concentration can be determined using radioisotopic or spectroscopic techniques.
- Fluorescence spectroscopy - Find a ligand whose absorbance or fluorescence spectra changes when bound to M. Alternatively, monitor a group on M whose absorbance or fluorescence spectra changes when bound to L .
- Other (higher tech) methods:

ITC - Isothermal Titration Calorimetry
SPR - Surface Plasmon Resonance
Fast Kinetics

Measurements of fluorescence anisotropy to monitor binding of RNAP• σ^{54} to different promoters

The Sensorgram is I nformation Rich

Chemical Kinetics: the study of the rate of reactions
rate measurements + dependence of experimental conditions
Mechanism: Explain what the molecules are doing / a set of reactions showing how molecules collide and make and break bonds.

For one stoichiometric reaction, there are many mechanisms.
Principle of microscopic
reversibility

Rate Law / Order of Reaction
Sucrose + water ---- (H+) \rightarrow fructose + glucose
Measuring rate data: [] vs. time / "quenching" if time to measure is long compared to rate of reaction. \rightarrow "Quenched-flow" apparatus

Full Time-course (Progress Curve) kinetics

$E+S \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} E S \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftarrows}} E P \underset{k_{-3}}{\stackrel{k_{3}}{\rightleftarrows}} E+P$
Follow reaction until reaction approaches equilibrium Decreasing rate of turnover is due to decreasing [S] and increasing [P]

$$
\text { Data can be fit directly by simulation to extract } k_{\text {cat }} \text { and } \mathrm{K}_{\mathrm{m}}
$$

KinTek Stopped-Flow

Fluorescence
or
Light scattering

- $30 \mu \mathrm{l}$ per shot
- 1 msec dead time
- $10 \mu 1$ observation cell

KinTek SF-2003 Stopped-Flow

> Computer controlled motor drive
> 1 ms dead time
> $10 \mu \mathrm{~L}$ sample volume

Kinetics of substrate binding: irreversible binding

$$
E+S \xrightarrow{k_{1}} E g S
$$

$$
\begin{array}{rll}
d[E] / d t & =-k_{1}[E][S] & \\
d[E] /[E] & =-k_{1}[S] d t & \begin{array}{l}
k_{1} \text { is a second order rate } \\
\text { constant, units } \mathrm{M}^{-1} \mathrm{~s}^{-1}
\end{array} \\
\int_{E_{0}}^{E} d[E] /[E] & =-\int_{0}^{t} k_{1}[S] d t=-k_{1}[S] \int_{0}^{t} d t & \text { Assume [S] is constant } \\
\ln \left([E] /[E]_{0}\right) & =-k_{1}[S]\left(t-t_{0}\right) & \begin{array}{l}
k_{1}[S \text { is the pseudo-first order } \\
\text { rate constant, units } \mathrm{s}^{-1}
\end{array} \\
{[E] /[E]_{0}} & =e^{-\underline{k_{1}[S] t}} & \begin{array}{l}
\text { E decays and ES appears by an } \\
\text { exponential function with rate }
\end{array} \\
{[E S] /[E]_{0}} & =1-e^{-\underline{k_{1}[S]}} & \underline{k_{1}[S]}
\end{array}
$$

Kinetics of irreversible substrate binding

$$
E+S \xrightarrow{k_{1}} E \mathrm{~g} S
$$

Kinetics of irreversible substrate binding

We often use the units of $\mu \mathrm{M}^{-1} \mathrm{~s}^{-1}=10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
Diffusion limit is approximately $10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}=100 \mathrm{\mu M}^{-1} \mathrm{~s}^{-1}$

Numerical Integration

Concentration dependence of binding rate

$$
k_{o b s}=k_{1}[S]+k_{-1}
$$

NOTE: increase in amplitude and rate as a function of increasing [S] One experiment can serve to define $\mathrm{k}_{1}, \mathrm{k}_{-1}$ and K for S binding.

Kinetics of substrate binding: Two-steps, four rates
C. Complete solution

$$
E+S \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} E g S \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftarrows}} E g X
$$

Each species follows a double exponential

$$
\begin{aligned}
{[E]_{i} /[E]_{0} } & =A_{1} e^{-\lambda_{1} t}+A_{2} e^{-\lambda_{2} t}+C \\
\text { with rates of: } \quad \lambda_{1} & \approx k_{1}[S]+k_{-1}+k_{2}+k_{-2} \\
\lambda_{2} & \approx \frac{k_{1}[S]\left(k_{2}+k_{-2}\right)+k_{-1} k_{-2}}{k_{1}[S]+k_{-1}+k_{2}+k_{-2}}
\end{aligned}
$$

Reaction with serine with pyridoxal phosphate

Tryptophan Synthase

$$
\begin{aligned}
& E+\operatorname{Ser} \underset{20 s^{-1}}{\stackrel{0.135 \mu M^{-1} s^{-1}}{\rightleftarrows}} E \sim \operatorname{Ser} \underset{10 s^{-1}}{\stackrel{45 s^{-1}}{\rightleftarrows}} E \sim X \\
& \text { (}
\end{aligned}
$$

Anderson, K.A., Miles, E. W. and Johnson K. A. (1991) J. Biol. Chem 266, 8020-8033

Conventional Data Fitting

1. Derive mathematical expressions for time dependence from a model

- Almost always requires simplifying assumptions
- Math soon gets complex (one exponential for each step)

2. Fit time dependence to mathematical expression to extract a rate

- Fit to more independent variables than are relevant to the model
- Loose relationships between rate and amplitude

3. Re-plot rate as a function of concentration

- Observe patterns and develop model

4. Derive another mathematical expression to account for concentration dependence of the rate(s)

- Requires more simplifying assumptions

5. Fit the concentration dependence to the mathematical expression to extract primary kinetic constants ($\mathrm{k}_{\text {cat }}, \mathrm{K}_{\mathrm{m}}$, or rate constants)

- Propagate errors through all steps of data fitting

Concentration dependence of fluorescence transient

Global Data Fitting based upon Simulation

$$
E+S \underset{k_{1}}{\stackrel{k_{1}}{\rightleftarrows}} E S \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftarrows}} E X
$$

Fit data directly to the model, get 4 rate constants and two fluorescence output factors.

Nonlinear Regression: minimize sum square error

Confidence Contour from Data Fitting

$$
\mathrm{k}_{-1}=19.7 \pm 3 \mathrm{~s}^{-1}
$$

$\mathrm{FIT}=\mathrm{SSE}_{\text {min }} /$ SSE $_{\mathrm{x}, \mathrm{y}}$

$$
\begin{aligned}
& \mathrm{k}_{+1}=0.134 \pm 0.0003 \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{k}_{+1}=0.134 \pm 0.04 \mathrm{M}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
k_{-1}=19.7 \pm 0.09 \mathrm{~s}
$$

