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> 200,000 organisms!!

>100,000,000,000 bases

The Birth of Molecular Biology:  DNA Structure GOLD: http://www.genomesonline.org/gold_statistics.htm

GOLD – Genomes 
On Line Database
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Genomics

Proteomics 

Interactomics

Systems Biology –

None of these fields of 
research would be 
possible without 
Bioinformatics, 
which would not be 
possible with lots of 
computing power!

Computational biology &  Bioinformatics

Computational biology and bioinformatics focus on the computational/ theoretical 
study of biological processes, and much of the disciplines involve constructing 
models like those above, then testing/validating/proving/applying these models using 
computers, hence the nickname “in silico biology ”.  The fields are closely related: 
computational biology is the more inclusive name, and bioinformatics often refers 
more specifically to the use of “informatics” tools like databases and data 
mining.  

Big problems tackled by these fields include :

Assembling complete genomes from pieces of sequenced DNA

Finding genes in genomes

Modeling networks & interactions of proteins

Predicting protein/RNA folding, structure, and function

Sequence alignments   (BLAST)

Identify Protein or Gene from Partial Information

Infer Functional Information

Infer Structural Information

Infer Evolutionary Relationships

Why Align Sequences?
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(k respective tuples
=1 or 2 proteins / 4-6 DNA)

FASTA & FASTA Format
The FASTA algorithm is a heuristic method for string comparison. It was 
developed by Lipman and Pearson in 1985.  FASTA compares a query 
string against a single text string.

BLAST – Basic Local Alignment Search Tool

Many “flavors” of BLAST

(Position-Specific Interative)

T he BLAST algorithm was developed for protein alignments in 
comparison to FASTA, which was developed for DNA sequences.  BLAST
concentrates on finding regions of high local similarity in alignments without 
gaps, evaluated by an alphabet-weight scoring matrix.

Sequence  Alignment
The Smith-Waterman algorithm considers a simple model for protein 
sequence evolution that allows us to align amino acid sequences of 
proteins to see if the proteins are related.  BLAST is designed to mimic 
this algorithm, but BLAST is much faster due to some shortcuts and 
approximations and clever programming tricks.

This process of gene evolution can be modeled as a stochastic 
process of gene mutation followed by a “selection” process for those 
sequences still capable of performing their given roles in the cell.  
Over enough time, as new species evolve & diverge from related species, 
this has the result of producing families of related gene sequences, more 
similar in regions where that particular sequence is critical for the function 
of the molecule, and less similar in regions less critical for the molecule’s 
function.  Frequently, we observe only the products of millions of years 
of this process.  Given a set of molecules (DNA, RNA or protein 
sequences) - ?? How can we decide if they are similar enough to be 
considered part of the same family or if the observed similarity is just 
present by random chance.  
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To align two sequences, we need:
1.  Some way to decide which alignments are better than others. For this, we’ll 
invent a way to give the alignments a “score” indicating their quality.

“Scoring Matrix”
2.  Some way to align the proteinsso that they get the best possible score.

Smith-Waterman algorithm

dynamic programming, recursive manner

3.  Then finally, some way to decide when a score is “good enough” for us to 
believe the alignment is biologically significant.

“Scramblings - Expect Values”

extreme value distribution

What is a scoring matrix?
The aim of a sequence alignment, is to match "the most similar elements" of 
two sequences. This similarity must be evaluated somehow.

For example, consider the following two alignments: 
AIWQH         AIWQH    
AL-QH A-LQH                   

They seem quite similar: both contain one “gap " and one “substitution,” just at 
different positions. However, the first alignment is the better one because isoleucine
(I) and leucine (L) are similar sidechains , while tryptophan (W) has a very different 
structure. This is a physico-chemical measure; we might prefer these days to say 
that leucine simply substitutes for isoleucine more frequently ---without giving an 
underlying "reason" for this observation.

However we explain it, it is much more likely that a mutation changed I into L and 
that W was lost, than W was changed into L and I was lost. We would expect that 
a change from I to L would not affect the function as much as a mutation from W to L--
-but this deserves its own topic.

To quantify the similarity achieved by an alignment, scoring matrices are used: 
they contain a value for each possible substitution, and the alignment score is the 
sum of the matrix's entries for each aligned amino acid pair. For gaps a special gap 
score is necessary ---just add a constant penalty score for each new gap. The optimal 
alignment is the one which maximizes the alignment score.

Importance of scoring matrices

Scoring matrices appear in all analysis involving sequence comparison. 
The choice of matrix can strongly influence the outcome of the analysis. 
Scoring matrices implicitly represent a particular theory of evolution. 
Understanding theories underlying a given scoring matrix can aid in making proper 
choice. 

Types of matrices

PAM BLOSSUM GONNET DNA Identity Matrix

Ref: http://www.ebi.ac.uk/clustalw/#
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Unitary Scoring Matrices
Early sequence alignment programs used unitary scoring matrix.  A unitary matrix 
scores all matches the same and penalizes all mismatches the same. Although 
this scoring is sometimes appropriate for DNA and RNA comparisons, for protein 
alignments using a unitary matrix amounts to proclaiming ignoran ce about 
protein evolution and structure. Thirty years of research in aligning protein 
sequences have shown that different matches and mismatches among the 400 
amino acid pairs that are found in alignments require different scores. 

Many alternatives to the unitary scoring matrix have been suggested. One of the 
earliest suggestions was scoring matrix based on the minimum number of 
bases that must be changed to convert a codon for one amino acid into a 
codon for a second amino acid. This matrix, known as the minimum mutation 
distance matrix, has succeeded in identifying more distant relationships among 
protein sequences than the unitary matrix approach. 
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Evolutionary Distances
The best improvement achieved over the unitary matrix was based on evolutionary 
distances. Margaret Dayhoff pioneered this approach in the 1970's. She made an 
extensive study of the frequencies in which amino acids substituted for each other 
during evolution. The studies involved carefully aligning all of the proteins in 
several families of proteins and then constructing phylogenetic trees for each 
family.  Each phylogenetic tree was examined for the substitutions found on each 
branch. This lead to a table of the relative frequencies with which amino acids 
replace each other over a short evolutionary period. 

This table and the relative frequency of occurrence of the amino acids in the proteins 
studied were combined in computing the PAM (Point Accepted Mutations) family 
of scoring matrices. 

From a biological point of view PAM matrices are based on observed mutations. 
Thus they contain information about the processes that generate mutations as 
well as the criteria that are important in selection and in fixing a mutation within a 
population. From a statistical point of view PAM matrices, and other log-odds 
matrices, are the most accurate description of the changes in amino acid
composition that are expected after a given number of mutations that can be
derived from the data used in creating the matrices. Thus the highest scoring 
alignment is statistically the most likely to have been generated by evolution rather 
than by chance.

Log-odds matrices: Each score in the matrix is the logarithm of an odds ratio . 
The odds ratio used is the ratio of the number of times residue "A" is observed 
to replace residue "B" divided by the number of times residue "A" would be 
expected to replace residue "B" if replacements occurred at random. 

The BLOSUM family of matrices developed by Steven and Jorja Henikoff are one 
of these newly developed log-odds scoring matrices. The improved performance 
of the BLOSUM matrices can be attributed to many more protein sequences 
known now, thus they incorporate many more observed amino acid substitutions, 
and because the substitutions used in constructing the BLOSUM matrices are 
restricted to those substitutions found within well conserved blocks in a 
multiple sequence alignment. 

Log-odds scoring

PAM  (Percent Accepted Mutation)
A unit introduced by M.O. Dayhoff et al. to quantify the amount of evolutionary 
change in a protein sequence. 1.0 PAM unit, is the amount of evolution which 
will change, on average, 1% of amino acids in a protein sequence. A PAM(x) 
substitution matrix is a look-up table in which scores for each amino acid 
substitution have been calculated based on the frequency of that substitution in 
closely related proteins that have experienced a certain amount (x) of                   
evolutionary divergence. 

PAM matrices are based on global alignments of closely related proteins. 

The optimal alignment of two very similar sequences with PAM 500 may be 
less useful than that with PAM 50.
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The colored regions in the figure above mark one possible grouping of such 
positive scores. These regions provide an objective basis for defining 
conservative substitutions, namely as amino acids that replace each other more 
frequently than would be expected from random replacements. 

Example of how to score an alignment with a gap:

Seq #1 V    D    S    - C    Y

Seq #2 V    E    S    L    C    Y

Score 4     3    1  -11   12   10

19
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BLOSUM matrices are based on local 
alignments. 

BLOSUM (BLOcks SUbstitution Matrix): BLOSUM 62 is a matrix calculated 
from comparisons of sequences with no less than 62% divergence.

BLOSUM 62 is the default matrix in BLAST 2.0. Though it is tailored for 
comparisons of moderately distant proteins, it performs well in detecting closer 
relationships. A search for distant relatives may be more sensitive with a different 
matrix. 

Differences between PAM and BLOSUM

PAM matrices are based on an explicit evolutionary model (that is, 
replacements are counted on the branches of a phylogenetic tree), whereas the 
BLOSUM matrices are based on an implicit rather than explicit model of 
evolution. 

The sequence variability in the alignments used to count replacements. The PAM
matrices are based on mutations observed throughout a global alignment, this 
includes both highly conserved and highly mutable regions. The BLOSUM
matrices are based only on highly conserved regions in series of alignments 
forbidden to contain gaps. 

BLOSUM62 Substitution Scoring Matrix. The BLOSUM 62 matrix is a 20 x 
20 matrix in which every possible identity and substitution is assigned a 
score based on the observed frequencies of such occurences in 
alignments of related proteins. Identities are assigned the most positive 
scores. Frequently observed substitutions also receive positive scores
and seldom observed substitutions are given negative scores. 

The entropy as defined by information theory is the average amount of 
information per position in a sequence alignment that is available to determine 
whether or not the sequences are homologous. This amount of entropy is 
available only if the similarity scores used in the database search or alignment are 
matched for the appropriate degree of sequence divergence. 

Sequnce Analysis: Which scoring method should I use?
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An Alignment Algorithm
If we had all the time in the world, we could just make all possible alignments, 
score them all, & choose the best.  But realistically, that won’t work, since 
even for two 100 amino acid sequences, there are 1059 possible 
alignments . So, the following approach was developed.

The particular class of algorithm we’ll use is called dynamic programming, 
which refers to a set of algorithms that allow the optimal solutions to be found 
for problems that can be defined in a recursive manner. That is, the 
problems are broken into subproblems, which are in turn broken into 
subproblems, etc, until the simplest subproblemscan be solved.  For 
sequence alignments, this sequential dependency takes a form where the 
choice of optimal alignment of a sequence of length n is found from the 
solution to the optimal alignment of a sequence of length n-1 plus the 
alignment of the nth symbol, and the optimal alignment of the n-1 case is a 
function of the n-2 case, and so on.  Dynamic programming was 
developed by Richard Bellman 40-50 years ago, but then “rediscovered”
by biologists aligning sequences in the 1970’s.

There are 2 types of alignments that we could make:  global and local
Global alignments will require a forced match between every symbol of one string 
with some symbol (or gap) of the second string, e.g.

ACGTTATGCATGACGTA

-C---ATGCAT----T-

Local alignments will correspond to the best matching subsequences (including 
gaps).  For the above example, this corresponds to:

ATGCAT

ATGCAT

We’ll look at local alignments, since these are what are used in almost any 
sequence alignment algorithm you might choose.  This approach (in biology) is 
named the Smith-Waterman algorithm after Temple Smith & Mike Waterman, 
Journal of Molecular Biology vol. 147, 195-197 (1981). 
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Ref: http://www.ebi.ac.uk/clustalw/#

GAPS / Gap peanaties

In most alignment and search programs, the gap penalty consists of two 
terms, the cost to open the gap and the cost to extend the gap . 
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Examples of aligned protein sequences:  

Shown are 3 pairs of sequences, showing aligned sequences of proteins named 
FlgA1, FlgA2, FlgA3, and HvcPP.  Between each pair the perfect matches and close 
matches (shown by + symbols, indicating chemically similar amino acids) are written.

Two biologically related proteins with similar sequences:

FlgA1 EAGNVKLKRGRLDTLPPRTVLDINQLVDAISLRDLSPDQPIQLTQFRQAWRVKAGQRVNVIASGD
++K+K+GRLDTLPP  +L+ N    A+SLR ++  QP+     R+ W +KAGQ V V+A G+ 

FlgA2 TLQDIKMKQGRLDTLPPGALLEPNFAQGAVSLRQINAGQPLTRNMLRRLWIIKAGQDVQVLALGE   (186)

Also biologically related (& fold up into the same 3D protein structure):
FlgA1 EAGNVKLKRGRLDTLPPRTVLDINQLVDAISLRDLSPDQPIQLTQFRQAWRVKAGQRVNVIASGD 

A   +         P        +L   I+ R L P + I     R+AW V+ G  V V     
FlgA3 LAALKQVTLIAGKHKPDAMATHAEELQGKIAKRTLLPGRYIPTAAIREAWLVEQGAAVQVFFIAG (50)

But these are biologically unrelated (& fold up into unrelated structures):

FlgA1 AGNVKLKRGRLDTLPPRTVLDINQLVDAISLRDLSPDQPIQLTQFRQA-WRVKAGQRVNVIASGD      
AG+V  K G +  + PRT  ++      I+     P  PI    +++A WRV A + V V+  GD

HvcPP AGHV--KNGTMRIVGPRTCSNVWNGTFPINATTTGPSIPIPAPNYKKALWRVSATEYVEVVRVGD (128)

The problem we face is how to distinguish the biologically meaningless match 
(FlgA1-HvcPP) from the biologically meaningful ones (FlgA1-FlgA2 and FlgA1-
FlgA3)?

How do we know when a score is “good enough”?
Two elements of aligning sequences:

scoring the alignments (by generating substitution matrices) 

constructing the optimal scoring alignments by dynamic programming.

After we get an alignment, we have to decide if score is “good enough” to be 
significant.  One way to this is to ask how hard it is to get that score from random 
alignments.  Suppose we “scrambled” one of the sequences, and found the best 
alignment with the other sequence. The algorithm will always give us an 
alignment, even though the score is not very good.  Still, let ’s do the scrambling 
and alignment process 1000 times.  If we look at those scores, and never see a 
score as good as the real one, we can say that the real one has a 1 in a 1000 
chance of happening just by luck.  If we did this 1,000,000 times and still didn’t 
see a score that good, we would begin to feel pretty confident in our alignment being 
significant. 

1)  H E A G A W G H E E

2)          A W - H E 

Could do a million random tests after an alignment, and that should give a 
correct feeling for how good the alignment was.  However, in practice, we 
can get away with just doing a few random trials, then mathematically 
modeling the scores we get out to save having to do a million such trials. 
The histogram of scores turns out to have a particular, predictable shape 
known as the extreme value distribution (also called the Gumbel
distribution).  Visually, the extreme value distribution looks this:

This distribution can be described by

an equation of the form:

where N is the number of scrambled y's tested, µ is the mean value of the 
high scores from the scrambling experiment, and k and λ are numbers that 
characterize the shape of the particular extreme value distribution that 
comes from aligning x to y.  In practice, k and λ can be fit from the scores 
from a few random alignments, 
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Sequence #1: 

LTLTLTLT

Sequence #2:

YAYAYAYAY

Advantages  of  Multiple 
Sequence  Alignments

LTLTLTLT-

YAYAYAYAY

or ?

-LTLTLTLT

YAYAYAYAY

Sequence #3: 

TYTYTYTYT

LTLTLTLT
* * * *

TYTYTYTYT
* * * * 
YAYAYAYAY

Multiple Sequence Alignments
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Steps in doing a Multiple Sequence Alignment:

1) Get desired sequence in FASTA format.

2) NCBI web site – BLAST run  (PSI BLAST)

3) Select best sequences to use in alignment (diversity, not always best 
scores)

4) EMBL web site – ClustalW run

>CgX SEQUENCE
MPTYTCWSQRIRISREAKQRIAEAITDAHHELAHAPKYLVQVIFNEVEPDSYFIAAQS
ASENHIWVQATIRSGRTEKQKEELLLRLTQEIALILGIPNEEVWVYITEIPGSNMTEY
GRLLMEPGEEEKWFNSLPEGLRERLTELEGSSE

EEEEEEETT   HHHHHHHHHHHHHHHHHHHT  GGG EEEEEEE GGG EETTEETTTT

4OT    1 PIAQIHILEG_RSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASKVRR    62

CHMI   1 PHFIVECSDNIREEADLPGLFAKVNPTLAATGIFPLAGIRSRVHWVDTWQMADGQHDYAFVHM..-125

MIF    1 PMFIVNTNVP_RASVPEGFLSELTQQLAQATGK_PAQYIAVHVVPDQLMTFSGTNDPCALCSL..-114

*          *       *              *                   

4-OT– (Tautomerase/MIF Superfamily)
- with Professor Chris Whitman (Pharmacy)

Christian P.  
Whitman

A) B) C)

Ref: Taylor, A.B., Czerwinski, R.M., Johnson, W.H., Whitman, C.P., an d Hackert, M.L., "Crystal Structure of 4 -Oxalocrotonate Tautomerase Inactivated by 2 -Oxo-3-
pentynotate at 2.4 Å resolution: Analysis and Implications for the Mechanism of Inactivation and Catalysis" Biochemistry, 37 ,  14692-14700 (1998).
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4-OT   - Tautomerase

4OT Homologues

CHMI  - Isomerase

MIF - Cytokine / Hormone

Dehalogenase

Decarboxylase

α6 α 3 α 2 (αβ) 3

Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-
BLAST: a new generation of protein database searchprograms",  Nucleic Acids Res. 25:3389-3402. 
RID: 1012187428-16844-19639
Query= Pseudomonas putida - 4-OT    (62 letters)
1 piaqihileg rsdeqketli revseaisrs ldapltsvrv iitemakghf giggelaskv rr
Database: All non-redundant GenBank CDS
translations+PDB+SwissProt+PIR+PRF

857,413 sequences; 270,034,499 total letters
*********************
Sequences with E-value BETTER than threshold

Round 1 – 30 Hits /    Round 2 57 hits   /  Round 3 - 66 Hits

Sequences with E-value BETTER than threshold
Score    E

Sequences producing significant alignments:  (bits) Value
gi|6624277|dbj|BAA88507.1| (AB029044) 4-oxalocrotonate isomerase...   81 2e-15 
gi|16124116|ref|NP_407429.1| (NC_003143) putative tautomerase [Y...   78 2e-14 
gi|14715457|dbj|BAB62059.1| (D85415) 4-oxalocrotonate tautomeras...   78 2e-14

gi|15642664|ref|NP_232297.1| (NC_002505) 5-carboxymethyl-2-hydro...   44 3e-04 
gi|15801678|ref|NP_287696.1| (NC_002655) ydcE gene product [ Esch...   44 3e-04 
gi|16079011|ref|NP_389834.1| (NC_000964) similar to hypothetical...   43 8e-04 
*******************
Sequences with E-value WORSE than threshold
gi|15894207|ref|NP_347556.1| (NC_003030) Protein related to MIFH...   38 0.014 
gi|14600626|ref|NP_147143.1| (NC_000854) MRSA protein [Aeropyrum...   37 0.047 
gi|17562710|ref|NP_506003.1| (NM_073602) macrophage migration in...   35 0.16 

gi|5051891|gb|AAD38354.1| (AF119571) macrophage migration inhibi...   30 4.4   
gi|14600626|ref|NP_147143.1| (NC_000854) MRSA protein [Aeropyrum...   30 4.6   

gi|5327268|emb|CAB46354.1| (AJ012740) macrophage migration inhib...   30 8.1

Sample Psi-BLAST Output
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