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Computational biology & Bioinformatics

Computational biology and bioinformatics focus on the computational/ theoretical
study of biological processes, and much of the disciplines involve constructing
models like those above, then testing/validating/proving/applying these models using
computers, hence the nickname “in silico biology ". The fields are closely related:
computational biology is the more inclusive name, and bioinformatics often refers
more specifically to the use of “informatics” tools like databases and data
mining.

Big problems tackled by these fields include:
Assembling complete genomes from pieces of sequenced DNA
Finding genes in genomes
Modeling networks & interactions of proteins
Predicting protein/RNA folding, structure, and function

Sequence alignments (BLAST)

Why Align Sequences?
Identify Protein or Gene from Partial Information
Infer Functional Information
Infer Structural Information

Infer Evolutionary Relationships

Assumes:
conservation of conservation of
sequence function

BUT: Function carried out at level of proteins, i.e.
3-D structure

Sequence conservation carried out at level of DNA
1-D sequence




Alignments

* Types:
* Local
« Global
+ Ungapped
Gapped (2 types- linear, affine)

» Methods:

+ Dot matrix
* Dynamic Programming
+ Word, k<tup

(k respective tuples
=1 or 2 proteins / 4-6 DNA)

-

FASTA & FASTA Format

The FASTA algorithm is a heuristic method for string comparison. It was
developed by Lipman and Pearson in 1985. FASTA compares a query
string against a single text string.
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BLAST —Basic Local Alignment Search Tool

T he BLAST algorithm was developed for protein alignments in
comparison to FASTA, which was developed for DNA sequences. BLAST
concentrates on finding regions of high local similarity in alignments without
gaps, evaluated by an alphabet-weight scoring matrix.

Many “flavors” of BLAST

Program Query Database
BLASTP aa aa
BLASTN nt nt
BLASTX nt (= aa) aa
TBLASTN aa nt (= aa)
TBLASTX nt (= aa) nt (= aa)
PsiBLAST aa (aa msa) aa

(Position-Specific Interative)

Sequence Alignment

The Smith-Waterman algorithm considers a simple model for protein
sequence evolution that allows us to align amino acid sequences of
proteins to see if the proteins are related. BLAST is designed to mimic
this algorithm, but BLAST is much faster due to some shortcuts and
approximations and clever programming tricks.

This process of gene evolution can be modeled as a stochastic
process of gene mutation followed by a “selection” process for those
sequences still capable of performing their given roles in the cell.
Over enough time, as new species evolve & diverge from related species,
this has the result of producing families of related gene sequences, more
similar in regions where that particular sequence is critical for the function
of the molecule, and less similar in regions less critical for the molecule’s
function. Frequently, we observe only the products of millions of years
of this process. Given a set of molecules (DNA, RNA or protein
sequences) - ?? How can we decide if they are similar enough to be
considered part of the same family or if the observed similarity is just
present by random chance.




Alignments- Good Bad and Ugly

HgbA-human
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HygbA-human
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To align two sequences, we need:

1. Some way to decide which alignments are better than others. For this, we’'ll
invent a way to give the alignments a“score” indicating their quality.

“Scoring Matrix”
2. Some way to_align the proteins so that they get the best possible score.
Smith-Waterman algorithm
dynamic programming, recursive manner

3. Then finally, some way to decide when a score is “good enough” for us to
believe the alignment is biologically significant.

“Scramblings - Expect Values”

extreme value distribution

What is a scoring matrix?

The aim of a sequence alignment, is to match "the most similar elements" of
two sequences. This similarity must be evaluated somehow.

For example, consider the following two alignments:

Al WOH Al WH

AL- QH A LCQH
They seem quite similar: both contain one “‘gap" and one “substitution,” just at
different positions. However, the first alignment is the better one because isoleucine
(1) and leucine (L) are similar sidechains, while tryptophan (W) has a very different
structure. This is a physico-chemical measure; we might prefer these days to say
that leucine simply substitutes for isoleucine more frequently ---without giving an
underlying "reason" for this observation.

However we explain it, it is much more likely that a mutation changed | into L and
that W was lost, than W was changed into L and | was lost. We would expect that
a change from | to L would not affect the function as much as a mutation from W to L--
-but this deserves its own topic.

To quantify the similarity achieved by an alignment, scoring matrices are used:
they contain a value for each possible substitution, and the alignment score is the
sum of the matrix's entries for each aligned amino acid pair. For gaps a special gap
score is necessary ---just add a constant penalty score for each new gap. The optimal
alignment is the one which maximizes the alignment score

Importance of scoring matrices

Scoring matrices appear in all analysis involving sequence comparison.

The choice of matrix can strongly influence the outcome of the analysis.

Scoring matrices implicitly represent a particular theory of evdution.
Understanding theories underlying a given scoring matrix can aid in making proper
choice.

Types of matrices [ Ref: http://www.ebi.ac.uk/clustalw/#

PAM BLOSSUM GONNET DNA Identity Matrix




Unitary Scoring Matrices Simplest alignment representation — Dot plot
) _ ) _ _ ) Model: Need a metric of similarity between amino acid pairs
Early sequence alignment programs used unitary scoring matrix. A unitary matrix
scores all matches the same and penalizes all mismatches the same. Although 5|mpl.§3t metric — unitﬂr'yr mﬁtri;q:t |dgnt|t:||_' matrix
this scoring is sometimes appropriate for DNA and RNA comparisons, for protein o L ' '
alignments using a unitary matrix amounts to proclaiming ignoran ce about Example — self alignment " |
protein evolution and structure Thirty years of research in aligning protein GIFIDIS|FIKIR|L [E|F|&|E|V
sequences have shown that different matches and mismatches among the 400 G ‘h\ olololololololololololo
amino acid pairs that are found in alignments require different scores. - - 1
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Many alternatives to the unitary scoring matrix have been suggested. One of the R \1\ 0 D 0101010
earliest suggestions was scoring matrix based on the minimum number of L \;D 0(0|0|0
bases that must be changed to convert a codon for one amino acid into a E \‘l\ olo |: 1'} 0
codon for a second amino acid. This matrix, known as the minimum mutation 1 1
distance matrix has succeeded in identifying more distant relationships among F \1\ 0|0 _D
protein sequences than the unitary matrix approach. s [ Nq\ 0 D

Dot Matrix Alignments

Sequenceri

I

Now align two different sequences

Sequence#! 1
1

nsertion * Consider other similarity matrices

Inzgrtion besides identity....
+ Chemical similarity — binary decision

+ Amino acid conservation in aligned protein
families — min. similarity score (+/- window)

Average of multiple scoring systems

PN

A Global Alignment




Evolutionary Distances

The best improvement achieved over the unitary matrix was based on evolutionary
distances. Margaret Dayhoff pioneered this approach in the 1970's. She made an
extensive study of the frequencies in which amino acids substituted for each other
during evolution. The studies involved carefully aligning all of the proteins in
several families of proteins and then constructing phylogenetic trees for each
family. Each phylogenetic tree was examined for the substitutions found on each
branch. This lead to a table of the relative frequencies with which amino acids
replace each other over a short evolutionary period.

This table and the relative frequency of occurrence of the amino acids in the proteins
studied were combined in computing the PAM (Point Accepted Mutations) family
of scoring matrices.

From a biological point of view PAM matrices are based on observed mutations.
Thus they contain information about the processes that generate mutations as
well as the criteria that are important in selection and in fixing a mutation within a
population. From a statistical point of view PAM matrices, and other log-odds
matrices, are the most accurate description of the changes in amino acid
composition that are expected after a given number of mutations that can be
derived from the data used in creating the matrices. Thus the highest scoring
alignment is statistically the most likely to have been generated by evolution rather
than by chance.

Log-odds scoring
Log-odds matrices: Each score in the matrix is the logarithm of an odds ratio.
The odds ratio used is the ratio of the number of times residue "A" is observed
to replace residue "B" divided by the number of times residue "A" would be
expected to replace residue "B" if replacements occurred at random.

Deriwing realiste substifution matrices:

First need to know frequency of one amino acid substituting for anather

In related prateins [=P(ab]] chw the chance that substituting one for the ather
occurred by chance, based on the relative frequencies of each amina acid

in profeing, ola) and glb) Call this ihe "odds ratia” Plablglajglb)

If wie do thig for all positions in an alignment, than the tatal probasdiity will
be the product of the odds ratios af each position....but multiplication is
computationalky expensive....50... take the log (odds ratio) and add them instead.

The BLOSUM family of matrices developed by Steven and Jorja Henikoff are one
of these newly developed log-odds scoring matrices. The improved performance
of the BLOSUM matrices can be attributed to many more protein sequences
known now, thus they incorporate many more observed amino acid substitutions,
and because the substitutions used in constructing the BLOSUM matrices are
restricted to those substitutions found within well conserved blocks in a
multiple sequence alignment.

PAM (Percent Accepted Mutation)

A unitintroduced by M.O. Dayhoff et al. to quantify the amount of evolutionary
change in a protein sequence. 1.0 PAM unit, is the amount of evolution which
will change, on average, 1% of amino acids in a protein sequence. A PAM(x)
substitution matrix is a look-up table in which scores for each amino acid
substitution have been calculated based on the frequency of that substitution in
closely related proteins that have experienced a certain amount (x) of
evolutionary divergence.

PAM matrices are based on global alignments of closely related proteins.
71 groups of protein sequances, 85% similar
1572 aming acid changes.

Functional proteins —"Accepted” mutations by natural
salection

PAM1 matrix means 1% divergence between proteins - Le.

1 amine acid change per 100 residues. Some texts re-state
this as the probability of esach amino acid changing

into another is ~ 1% and probability of not changing is ~39%

The optimal alignment of two very similar sequences with PAM 500 may be
less useful than that with PAM 50.

Construction of a Dayhoff Matrix: PAM1

Step 1: Measure pairwise substitution frequencies for each
amino acid within families of related proteins

|

...GDSFHYFVSHG.... .
....GDSFHYYVSFG... .
...GDSYHYFVSFG.... .
...GDSFHYFVSFG... .
... GDSFHFFVSFG.... .

900 Phe (F)....+ another 100 probable Phe but...

100 Phe (F) — 80 Tyr (Y), 3 Trp (W), 2 His (H)....
Gives f,,i.e.  f.,=80
few=3

....by evolution!




Aming Acig Change  FAM{ Score PAM 250 Score

F—i 0. 0002 0.04 ™

F—R o, 00061 g.01

FoN  0.0001 0.02

F—D  0.0000 o.01 | These are the M, values!
F-C  0.0000 0.01 | j.e,the chance that one
F—g  0.0000 0.0L | amino acid will replace
FoE  0.0000 0.01 | another at 250 PAMs in
cizeo il A 2-0 | two proteins that are
et SR o o5 | Evolutionarily related
vt 0.bpid o 13 | loeach other!

FoE  0.0000 n.oz |

FoM  0.0001 0.02

FF  0.9946

F—F 0., 0001 0.02

Fs 0. 0003 0.03

FoT 00001 0.03

W 0.0001 0.01

F=Y  0.0021

FV  0.0001 0. 05

SUM=1.0

PAM 250 Amino Acid Similarity Matrix
tye 1Z » Example of how to score an alignment with a gap:
By -2 §
B T, & Seq #1 VDS - C Y
wr 8 1 g |1
e 10 e lE Seq #2 VE S L CY
thz -2 @& B |11 3
My -5 1 - ul » Score 4 3 1-11 12 10
ﬁ: _: : _'1 ? g g ; : , Secore= L{AA pair scores) — pop penalty = 19
@l -5 -1 @ -1 0 -L[|2z 2z 1 4
Wa -3 -2 0 -1 -1 -1
T R - LU TR T ™ Ry T [ e T B L
g -4 -3 0 g -2 -1 -1 -1 @8 1 2 <
Wal -2 -1 -1 -1 0 @ -2 -2 -2 -2 -2 -2 -2 |4
Wet -5 -3 -2 -2 -1 -1 -3 -2 @ -1 -2 0@ Q¥ &
g -2 -3 -2 -1 -1 ©® -2 -8 -2 -2 -2 -2 -2 |4 2 &
Lew -6 -4 -3 -3 -2 -2 -4 -3 -3 -2 - -3 -3 |
The -4 -5 -F -3 -4 -3 - -6 -4 -§ -2 -5 -d
Ty,r 0 -5 -5 -3 -3 -3 -4 -4 -Z -4 0 -4 -3
ke -B -7 -6 -2 -6 -5 -7 -7 -4 -5 -3 -3 2
Exm Ely Pro Ser Ala Thy Aap §ls Asn Bla ®is Lys hzg

The colored regionsin the figure above mark one possible grouping of such
positive scores. These regions provide an objective basis for defining
conservative substitutions, namely as amino acids that replace each other more
frequently than would be expected from random replacements.

But we have to use the right matrix!!!

PAM 250 matrix — 250% expected change

Sequences still -~ 1530 % similar, i.e. Fhe will match Fhe - 32% of the lime
Ala will mateh Ala ~ 13% of the tme

Eupected % similarity

Other PAM matrices: PAM 120 — 40% |

PAM 80— 50% . |iga for similar SeqUences
FaM 60 — 60%

PAMZED = 16-20% similarity.

Use the cormect PAM matrix for alignments based an how simifar the
sequences to be alghed are! But walt.,...how do we Know that in the
first place? Usually don'u!l!,

£o...... ry PAM200, PAMT20, PAMSD, PAMBEOD, and

PAM30 martrix and use the one hal gives the highest ungapped
aligment score

Alternative amino acid matrices

Problems with Dayhoff
= Based on aming acids, not nucleotides
* Assumas evolutionary model with explict phylogensetic relationships, and
circular arguments. alignment — matrices, metices —» new aignments.
= Based on a smal set of closaly related mokeculkes
Gonnett, Cohen & Benner
-All against All database matching wsing DARWIN
1,700,000 matchas
Compie muiafion matnces ait differert PAls DIRECTLY

BLOSUM = Blocks Amino Acid Substitutcn Matrices-Henikoff&Henikoff 1602

-based on a much larger dataset from ~500 Prosite families dentified by
Bairgch using conserved aming acid patterns “tocks” that define each Tamily.

Typicaly usad for multiple sequenca alignmant
An cydnatitutions notad, log sf0s rmtios darivesd.

for example... Biock patterns 604 identical give rise o BlosumGD matnx,
el e conservation of functional blacks based on un-gapped alignmens.

BlosumiiZ - best maich between information content and amount of data
Mal based an expicy evolionary mods!




BLOSUM matrices are based on local
alignments.

BLOSUM (BLOcks SUbstitution Matrix): BLOSUM 62 is a matrix calculated
from comparisons of sequences with no less than 62% divergence.

BLOSUM 62 is the default matrix in BLAST 2.0. Though it is tailored for
comparisons of moderately distant proteins, it performs well in detecting closer
relationships. A search for distant relatives may be more sensitive with a different
matrix.

Differences between PAM and BLOSUM

PAM matrices are based on an explicit evolutionary model (that is,
replacements are counted on the branches of a phylogenetic tree), whereas the
BLOSUM matrices are based on animplicit rather than explicit model of
evolution.

The sequence variability in the alignments used to count replacements. The PAM
matrices are based on mutations observed throughout a global alignment, this
includes both highly conserved and highly mutable regions. The BLOSUM
matrices are based only on highly conserved regions in series of alignments
forbidden to contain gaps.

BLOSUM®62 Substitution Scoring Matrix. The BLOSUM 62 matrix is a 20 x
20 matrix in which every possible identity and substitution is assigned a
score based on the observed frequencies of such occurences in
alignments of related proteins. Identities are assigned the most positive
scores. Frequently observed substitutions also receive positive scores
and seldom observed substitutions are given negative scores.

BEesum 43 Amdno Acid Sinilaity Matrix
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Sequnce Analysis: Which scoring method should | use?

Comparable Blosum and FAM Tables

Percent
Segquance
Blosum PAM Idantity
Tables (Entropy) Tables (Entropy) BAM Tables
Blosum 50 {1.18) PAM 100 {1.12) 43
Blosum BO {0,589} PAM 120 {0.98) 38
Blosum 62 {0, 66) BAM 160 {0.70) a0
Blogum 52 {0.53) PAM 200 {0.51) 25
EBlosum 45 (0.38}) DA 2EQ (0. 34) 20

The entropy as defined byinformation theory isthe average amount of
information per position in a sequence alignment that is available to determine
whether or not the sequences are homologous. This amount of entropy is
available only if the similarity scores used in the database search or alignment are
matched for the appropriate degree of sequence divergence.




Initial Alignment - Use residue exchange matrix
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An Alignment Algorithm

If we had all the time in the world, we could just make all possible alignments,
score them all, & choose the best. But realistically, that won't work, since
even for two 100 amino acid sequences, there are 10%® possible
alignments. So, the following approach was developed.

The particular class of algorithm we’ll use is called dynamic programming,
which refers to a set of algorithms that allow the optimal solutions to be found
for problems that can be defined in a recursive manner. That is, the
problems are broken into subproblems, which are in turn broken into
subproblems, etc, until the simplest subproblemscan be solved. For
sequence alignments, this sequential dependency takes a form where the
choice of optimal alignment of a sequence of length n is found from the
solution to the optimal alignment of a sequence of length n-1 plus the
alignment of the nth symbol, and the optimal alignment of the n-1 case is a
function of the n-2 case, and so on. Dynamic programming was
developed by Richard Bellman 40-50 years ago, but then “rediscovered”
by biologists alighing sequences in the 1970’s.

There are 2 types of alignments that we could make: global and local
Global alignments will require a forced match between every symbol of one string
with some symbol (or gap) of the second string, e.g.

ACGTTATGCATGACGTA

-C- - -ATGCAT- - - -T-
Local alignments will correspond to the best matching subsequences (including
gaps). For the above example, this corresponds to:

ATGCAT

ATGCAT

We'll look at local alignments, since these are what are used in almost any
sequence alignment algorithm you might choose. This approach (in biology) is
named the Smith-Waterman algorithm after Temple Smith & Mike Waterman,
Journal of Molecular Biology vol. 147, 195-197 (1981).

Recursion and Dynamic
Programming

Aligning two protein sequences without gaps — roughly an O{mn) problem.
With gaps — becomes computationally astronemical, and cannct be dene
by direct comparison methods. (= 22400 2wL); L=sequence length}

Alternative is to compare all possible pairs of characlers {matches and

mismatches, and also take gaps into account as well, while keeping
the number of comparigons manageable. The approach is called
dynamic programming. Mathematically proven to produce optimal alignment

Need a substitution or similarity matrix and some way to account for gaps.




GAPS / Gap peanaties

In most alignment and search programs, the gap penalty consists of two
terms, the cost to open the gap and the cost to extend the gap .

Utility Details

FASTA3, GAPOPEN or OPENGAP or OPEN GAP PENALTY : Penalty for the first residue in

BLASTZ, agap

CLUSTALW, (e.g.fasta defaults: -12 by with proteins, -16 for DNA).

ScanPs and

MPsrch. GAPEXT or EXTENDGAP or EXTEND GAP PENALTY : Penalty for additional
residues in a gap
{e.g. fasta defaults: -2 with proteins, -4 far DNA).

Ref: http://www.ebi.ac.uk/clustalw/#

T:

First write one ssquence across the top, and one down along the side

To do Dynamic Programming.
First write one sequence across the top, and one down along the side
=0 1 z 3 4 5
= Gap v u] b1 C Y

4
0 Gap 0 4

\-a A6 24 a2 40
e

1V 4 ... 4

8
2 E -16 Global alignments: Needieman-Wunsch-Sellers
0[n"} using linear gap penalty
I8 24
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e 2 40 % 8, = A& (from left to right)
8 ¥ A8 LB, = A [frem top to bottam)
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0 Gap 0 \\“ -15lr -16 24 32 40
i ¥ £ 5“
2 E B3 S0 scoring i) requires that we know
5{i-1, j-1) and 8{i. j-1) and S{i-1, j)...
3 5 o4 Therefore recursive. We use the solutions
Of smaller problems to solve larger ones.
4 L -32 AND we store how we got to the Sij scone,
i.e. the intermediate selutions in a tabular
5 C 40 matrixz. Computer scientists call this dynamic
pragramming, whers “programming” means
E Y A8 the matrix, not some kind of computer code.
To do amic Programmin
First write ene seguence across the top, and ene down along the side
=i} 1 2 3 4 5
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The Traceback:

After the alignment square is finished, start at the lower right and
work backwards following the arrows to see how you got there._ ..

=il 1 2 3 4 5
j= Gap v o 8 c ¥
0 Gap 0 48 6 2 a2 .40

ol (e
1V " *E}d{ﬁ‘--u—- 20 — 28
? E A8 BT bl - 9 7
I =~ "‘::‘ ‘o,
3 & 2 A4 6 9 -1 =7
gL 32 14 TN 3 ~
2 T
5 € w -3 -2 g .137.3
B Y 48 38 30 45 3 i :

Examples of aligned protein sequences:

Shown are 3 pairs of sequences, showing aligned sequences of proteins named
FlgAl, FIgA2, FIgA3, and HvcPP. Between each pair the perfect matches and close
matches (shown by + symbols, indicating chemically similar amino acids) are written.

Two biologically related proteins with similar sequences:
FI gAl EAGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQAVWRVKAGQRVNVI ASGD

++K+K+GRLDTLPP  +L+ N A+SLR ++ QP+ R+ W +KAGQ V V+A G+
FI gA2 TLQDI KMKQGRLDTLPPGALLEPNFAQGAVSLRQ NAGQPLTRNMLRRLW | KAGQDVQVLALGE (186)
Also biologically related (& fold up into the sane 3D protein structure):
FI gAl EAGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQAVRVKAGQRVNVI ASGD

A+ P +L I+ RLP+1 RFAWV+ G V V
FI gA3 LAALKQVTLI AGKHKPDAMATHAEEL QGKI AKRTLLPGRY!I PTAAI REAW.VEQGAAVQVFFI AG (50)
But these are biologically unrelated (& fold up into unrelated structures):
FI gA1l AGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQA- VRVKAGQRVNVI ASGD
AGHY K G+ + PRT ++ I+ P Pl +++A WVRV A + V V+ GD

HvcPP AGHV- - KNGTMVRI VGPRTCSNVWNGTFPI NATTTGPSI Pl PAPNYKKALWRVSATEYVEVVRVGD (128)

The problem we face is how to distinguish the biologically meaningless match

(FIgA1l-HvcPP) from the biologically meaningful ones (FIgA1-FIgA2 and FIgAl-
FlgA3)?

1) HEAGAWGHEE

2) AW- HE

How do we know when a score is “good enough” ?
Two elements of alighing sequences:
scoring the alignments (by generating substitution matrices)

constructing the optimal scoring alignments by dynamic programming.

After we get an alignment, we have to decide if score is “good enough” to be
significant. One way to this is to ask how hard it is to get that score from random
alignments. Suppose we “scrambled” one of the sequences, and found the best
alignment with the other sequence. The algorithm will always give us an
alignment, even though the score is not very good. Still, let’s do the scrambling
and alignment process 1000 times. If we look at those scores, and never see a
score as good as the real one, we can say that the real one has a 1in a 1000
chance of happening just by luck. If we did this 1,000,000 times and still didn’t
see a score that good, we would begin to feel pretty confident in our alignment being
significant.

Could do a million random tests after an alignment, and that should give a
correct feeling for how good the alignment was. However, in practice, we
can get away with just doing a few random trials, then mathematically
modeling the scores we get out to save having to do a million such trials.
The histogram of scores turns out to have a particular, predictable shape
known as the extreme value distribution (also called the Gumbel
distribution). Visually, the extreme value distribution looks this:

This distribution can be described by

an equation of the form: & /
kAl

pimax score < )= ¢

where N is the number of scrambled y's tested, mis the mean value of the
high scores from the scrambling experiment, and k and | are numbers that
characterize the shape of the particular extreme value distribution that
comes from aligning x to y. In practice, kand | can be fit from the scores
from a few random alignments,




« Two ways to get the K and /. parameters:

1- For many amine acid substitution matrices,
Altschul and Gish have tabulated their score
distribution for 10,000 random amino acid
sequences using various gap penalties

2- Even better! Calculate the distribution for the
two sequences you are aligning by keeping one
of them fixed and scrambling the other one — this
preserves BOTH sequence length and amino acid
composition!

EFTRIRI bits (67, Expect = 3e=07 In(2)
TETe

Seql (User Entered}
and -
Sl:qz (User Entered)
Query: »Seql
Length = 15
Reference: Query= Segl
{15 letters)

s Raw score = 67
g Lengen = 15 J Bit score |S=AR-InK

), Positives = 14715 (%3%)

Query: 1| FWLEVEGHSHTAPTC 15

FHL #V+G+EHTAP €
Sbjet: 1 FWLOVQGDEWTAPAG 15

lambda K B S=(.267)(67)-In(.0410) _ 454
$.319 0.1315  0.46d -
coppes 0.693

K H
0.267 0.0410 ©.140

Matrix: BLOSUMAZ

Gap Penalties: Existence: 11, Extension: 1 K . .
Humber of Hits te DH: 9 E~ Kmne*S which is
NHumber of Sequencess . R

e & ey Equivalent to:

Humber of successful extensions: 1

Humber of sequences better tham 10.0: L —

NHumber of HSP'e better than 10.0 without gapping: 1 =mn

Hunber of HSP's auccessfully gﬂpped in prelim test:

Humber of HSE" - that attempted ing in prelim test: 0

Humber of H8P" qﬂ]:'ped lmn-p[cl ELE
length of query: 15
length of database: 15

I'e
E=(24)(15)(2-04)=2 54e-07

Advantages of Multiple
Sequence Alignments

Sequence #3:
TYTYTYTYT

LTLTLTLT-

Sequence #1. YAYAYAYAY LTLTLTLT

LTLTLTLT ¥k
or ? ——

Sequence #2: TYTYTYTYT
-LTLTLTLT *oxoxox
YAYAYAYAY
YAYAYAYAY YAYAYAYAY

Multiple Sequence Alignments
For 3 sequences....

ARDFSHGLLENKLLGCDSMRWE

GRDYKMALLEQWILGCD*MHWD
SRDW--ALIEDCMV-CNFFRWD

An O(mnf) problem !
Consider sequences each 300 amino acids
2 sequences — (300)2

3 sequences — (300)3
but for v sequences — (300)"

Just became exponentiall




Still takes too long for more than three
segquences...need a better way!

* Progressive Methods of Multiple Sequence
Alignment

ClustalW
Higgins and Sharp 1988
* 1- Do pairwise analysis of all the sequences
{you choose similarity matrix).

+ 2- Use the alignment scores to make a
phylogenetic tree.

+ 3- Align the sequences to each other guided
by the phylogenetic relationships in the tree.

Steps in doing a Multiple Sequence Alignment:

1) Get desired sequence in FASTA format.
2) NCBI web site — BLASTrun (PSI BLAST)

3) Select best sequences to use in alignment (diversity, not always best
scores)

4) EMBL web site — ClustalW run
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4-OT- (Tautomerase/MIF Superfamily)

- with Professor Chris Whitman (Pharmacy)

Christian P.
Whitman

EEEEEEETT HHHHHHHHHHHHHHHHHHHT - GGG EEEEEEE GGG EETTEETTTT
401 1 PI AQ H LEG_RSDEQKETLI REVSEAI SRSLDAPLTSVRVI | TEMAKGHFG GGELASKVRR 62
CcHM 1 PHFI VECSDNI REEADLPGLFAKVNPTLAATG FPLAG RSRVHW/DTWQVADGQHDYAFVHM . - 125
MF 1 PMFI VNTNVP_ RASVPEGFLSEL TQQLAQATGK _ PAQYI AVHVVPDQLMIFSGTNDPCALCSL. .- 114

A) * B)

e

\7
p L

Ref: Taylor, A.B., Czerwinski, R.M., Johnson, W.H., Whitman, C.P., and Hackert, M.L., “Crystal Structure of 4-Oxalocrotonate Tautomerase Inactivated by 2-Oxo-3-
24A resolution: and Catalysis" 37, 1469214700 (1998)




= New Activities

—-o—-p Motif
p-ap == New Structures

4-OT - Tautomerase
40T Homologues
> CHMI - Isomerase
) MIF - Cytokine / Hormone
Dehalogenase

Decarboxylase

ag a; a, (ab),

Sample Psi-BLAST Output

Jinghui Zhang, Zheng Zhang, Webb MIler, and David J. Lipman (1997), "Gapped BLAST and PSI -
BLAST: a new generation of protein database searchprograns”, Nucleic Acids Res. 25:3389-3402.
RID: 1012187428-16844- 19639
Query= Pseudononas putida - 4-0T (62 letters)
1 piagqihileg rsdegketli revseaisrs |dapltsvrv iitemkghf giggel askv rr
Dat abase: Al non-redundant GenBank CDS
transl ati ons+PDB+Swi ssPr ot +Pl R+PRF
857, 413 sequences; 270,034,499 total letters

Sequences with Evalue BETTER than threshol d
Round 1 - 30 Hits / Round 2 57 hits / Round 3 - 66 Hts

Sequences with E value BETTER than threshold
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Score E
Sequences producing significant alignnments: (bits) Value
Qi | 6624277] dbj | BAAB8507. 1 (AB029044) 4-oxal ocrotonate isonerase. .. 81 2e-15
Qi | 16124116 ref | NP 407429. 1| ~ (NC_003143) putative tautonerase [VY... 78 2e-14
Qi 14715457] dbj | BAB62059. 1|  (D85415) 4-oxal ocrotonate tautomeras... 8 2e-14
Qi|15642664| ref| NP 232297 1 (NC_002505) 5- carboxynet hyl - 2-hydro. .. 44 3e- 04
Qi ] 15801678 ref | NP 287696. 1 (NC_002655) ydcE gene product [ Esch... 4 3e- 04
Qi ] 16079011| ref| NP 389834 1 (NC_000964) similar to hypothetical... 3 8e- 04
AR R AR AR AR —_—
Sequences with Evalue WORSE than threshold
Qi]15894207| ref| NP 347556.1 (NC_003030) Protein related to MFH. .. 38 0.014
Qi1 14600626[ref | NP 147143 1] (NC_000854) MRSA protein [Aeropyrum .. 37 0.047
Qi 117562710| ref| NP 506003. 1 (NM_073602) nmcrophage migration in... 35 0.16
Qi | 5051891 gb| AAD38354. 1 (AF119571) macrophage migration inhibi... 30 4.4
gi | 14600626| ref | NP 147143. 1] (NC_000854) MRSA protein [Aeropyrum. . 30 4.6
Qi | 5327268| enb| CAB46354. 1 (AJ012740) macrophage migration inhib... (o] 8.1
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Homology Modeling - Adjusting an alignment based on structure.

1 2 4 L] & 7 a 9 10 11 12 13
Tamplate PHE RSP ILE C¥3 ARG LEU PRO GLY SER ALR GLO ALA VAL
Model (bad}) 1| FHE ASW VAL CY¥5 ARG ALh PRO --- --- —-—- GLU ALA ILE
Model (good) 2 | FHE ASH VAL CY3 ARG '




