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Diffusion tensor imaging (DTI) techniques have made it possible to investigate white
matter plasticity in humans. Changes in DTI measures, principally increases in fractional
anisotropy (FA), have been observed following training programs as diverse as juggling,
meditation, and working memory. Here, we sought to test whether three months of
reasoning training could alter white matter microstructure. We recruited participants
(n = 23) who were enrolled in a course to prepare for the Law School Admission Test
(LSAT), a test that places strong demands on reasoning skills, as well as age- and
IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were
collected at two scan sessions scheduled three months apart. In trained participants but
not controls, we observed decreases in radial diffusivity (RD) in white matter connecting
frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter.
Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD
in the right internal capsule. In summary, reasoning training altered multiple measures
of white matter structure in young adults. While the cellular underpinnings are unknown,
these results provide evidence of experience-dependent white matter changes that may
not be limited to myelination.
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INTRODUCTION
Advances in neuroimaging techniques have led to important
progress in understanding how brain regions are structurally
and functionally connected in the human brain. Much of this
knowledge has been obtained from cross-sectional studies, which
provide only a snapshot of an individual’s brain at a single point
in time. As a result, we have only just begun to understand
how learning and experience shape brain connectivity. In this
paper, we provide evidence for experience-dependent changes in
white matter microstructure among young adults participating in
intensive cognitive training.

White matter microstructure can be investigated in vivo
using diffusion-weighted imaging (DWI). DWI relies on the
biophysical principal that, as water diffuses, it follows the path
of least resistance. Water diffusing in any given white matter
voxel encounters axons (which contain dense cytoskeletons,
are bounded by cellular membranes, and are surrounded by
myelin) and glial cells. Research in animals has shown that water
preferentially moves along axons rather than through the myelin
sheath (for review see Beaulieu, 2002; Assaf and Pasternak, 2008).
Activity-dependent increases in myelination could, therefore,
reduce diffusion through the myelin sheath. However, changes in
unmyelinated axons, and the number and/or size of glia, could
also alter diffusion.

Diffusion tensor imaging (DTI) analysis fits a tensor to DWI
to extract measures of axial diffusion [axial diffusion (AD or λ1)],

the preferential direction of water diffusion, and radial diffusion
(RD or λ23), the average of the two directions perpendicular to
AD. AD has been related to diffusion along an axon, whereas RD
is linked to diffusion through the myelin sheath (Beaulieu, 2002).
Fractional anisotropy (FA) is a scaled ratio of AD to RD (Basser,
1995; Pierpaoli and Basser, 1996). High FA indicates strong direc-
tionality of water diffusion, i.e., high white matter coherence.
Mean diffusivity (MD) is the average of diffusion parameters in
all three orthogonal directions. Low MD reflects a high density
of cells and/or extracellular material that impedes the diffusion of
water through brain tissue. Because these diffusion measures (AD,
RD, FA, and MD) have been shown to relate to different aspects
of white matter composition (Song et al., 2002, 2003), some
DTI studies of neuroplasticity have investigated the measures
separately, though many have focused specifically on FA.

Neuroplasticity in humans has been studied through two main
approaches. A first approach has been to compare experts to
novices, with the assumption that any brain differences between
the groups can be attributed to the extensive training experts
have received over the course of their lives. This work has yielded
mixed results in terms of the direction of observed differences in
DTI measures. For example, when comparing musicians to non-
musicians, both increased and decreased FA in the corticospinal
tract have been observed (Imfeld et al., 2009). Additionally, when
comparing fighter pilots—who demonstrate enhanced cognitive
control relative to the general population—with controls, lower
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RD in white matter underlying parietal cortex and higher RD in
white matter near medial frontal cortex were observed (Roberts
et al., 2010). In such studies, it is not possible to disambiguate the
effects of experience from an innate predisposition to pursue a
particular type of training.

A second approach to studying neuroplasticity in humans
involves direct experimental control over individuals’ experience.
To date, there have been very few published studies on training-
related plasticity in white matter microstructure in healthy adults.
One study showed that working memory training increased FA in
left parietal and frontal white matter, as well as white matter under
somatomotor cortices (Takeuchi et al., 2010). However, this study
did not include a control group, so effects of maturation in the
study’s young participants cannot be ruled out. A second study
showed that juggling training increased FA in white matter near
right posterior parietal cortex, potentially related to enhanced
use of visual areas important for detecting motion (Scholz et al.,
2009). A third study showed decreased FA in bilateral frontal
lobes, and increased MD in right parietal lobe and cerebellum
following practice with a balancing task (Taubert et al., 2010).
Finally, a fourth study showed that meditation training leads to
increased FA in medial anterior corona radiata (Tang et al., 2010).
Further analysis of this data set revealed that the majority of vox-
els exhibiting increased FA showed both decreased RD and AD
(Tang et al., 2012).

In the present study, we investigated white matter changes
associated with intensive training on relational reasoning, the
ability to compare and combine mental representations. The rea-
soning training paradigm consisted of a course aimed at improv-
ing scores on the Law School Admission Test (LSAT). The LSAT
has three parts: Logic Games, Logical Reasoning, and Reading
Comprehension (for a sample test, see http://www.lsac.org/jd/
pdfs/SamplePTJune.pdf). Both of the logic sections heavily tax
relational reasoning. Because this exam plays an almost determi-
native role in law school acceptance, we reasoned that students
would be highly motivated to prepare for it.

Numerous studies have implicated a bilateral fronto-parietal
network in reasoning (see Hampshire et al., 2011; Prado et al.,
2011; Krawczyk, 2012 for review), several of which have sug-
gested that rostrolateral prefrontal cortex (RLPFC) is specifically
involved in relational integration (Wendelken and Bunge, 2010;
Hampshire et al., 2011; Wendelken et al., 2011a,b). Based on these
findings, we predicted changes in white matter connecting frontal
and parietal cortices both within and between hemispheres. We
were specifically interested in changes in the trained group that
were significantly greater than those measured for an age- and IQ-
matched control group. In other words, we considered changes
in the trained group that could not be accounted for by typical
development in young adults over 3 months to be the strongest
evidence for experience-dependent plasticity.

METHODS
PARTICIPANTS
Twenty-five adults (14 females) took part in the training group,
and twenty-five adults (14 females) took part in the age- and
IQ-matched pre-law control group. The training group was
recruited through e-mail and classroom announcements to

students in Blueprint Test Preparation courses. The control
group was recruited through e-mails to pre-law organizations
and online postings. Recruitment and experimental procedures
were approved by the Committee for the Protection of Human
Subjects at the University of California at Berkeley. Participants
had no history of psychiatric or neurological disorder, and were
fluent in English. Three participants in the trained group and
two participants in the control group were left-handed.

Two participants—one from each group—were excluded from
the study because they exhibited dramatic changes in stress lev-
els and amount of sleep from time 1 to time 2 (more than three
SD from the mean of all participants). Additionally, two partic-
ipants from the control group were excluded because more than
5% of their brain volumes contained movement-related artifacts.
Finally, we tested for outliers in average whole-brain diffusion
measures at time 1, time 2, and in change between time points,
and excluded one participant in the trained group for showing
a decrease in MD and RD that was greater than two standard
deviations lower than the mean across both groups. Thus, our
final dataset included DTI data at two time points for 23 trained
individuals and 22 controls (Table 1).

BEHAVIORAL DATA
During the first testing session, we administered the Young Adult
Self Report (Achenbach, 1990, 1997) to screen out participants
who scored in the clinical range. We also administered two scales
from the Wechsler Adult Scale of Intelligence (WASI) (Wechsler,
1999), Matrix Reasoning and Vocabulary, to match the groups on
IQ (see Table 1). During both testing sessions, we administered
the Perceived Stress Scale (Cohen et al., 1983) and asked partici-
pants to report their sleep schedules for the preceding two weeks.
Reported stress levels and hours of sleep did not differ between
groups at either time point (Ps > 0.4), and neither group changed
significantly between time points (Ps > 0.2).

TRAINING PARADIGM
We selected the Blueprint Test Preparation course as the training
paradigm because it provided more classroom time than other
local programs: 100 h distributed across the three components

Table 1 | Demographic and behavioral measures for study

participants.

Trained Control

N = 23 N = 22

Age 21.39 (1.42) 21.44 (2.15)
WASI Matrix 29.75 (2.10) 29.37 (1.74)
WASI Vocabulary 66.33 (5.76) 67.10 (3.67)
Days between scans 89.17 (15.61) 90.91 (22.87)
PERCEIVED STRESS

Time 1 21.67 (7.71) 20.24 (7.32)
Time 2 21.16 (7.07) 22.11 (9.13)
HOURS OF SLEEP

Time 1 7.50 (0.88) 7.57 (0.96)
Time 2 7.33 (1.08) 7.34 (1.14)

Means and standard deviations are reported. None of the measures differed

significantly between groups (P > 0.2).
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of the LSAT (35 h for Logic Games, 35 h for Logical Reasoning,
and 30 h for Reading Comprehension). “Logic Game” questions
require test takers to integrate a series of rules in order to sequence
or group a set of items. “Logical Reasoning” questions ask them
to determine the logical flaw in an argument, identify an assump-
tion, or choose a statement that would strengthen or weaken an
argument. The remaining 30 h of class time were dedicated to
“Reading Comprehension” questions that require test-takers to
interpret short passages of text.

For the Logic Games section, students were taught to break
down problems into the essential information and to use dia-
grams to represent and integrate rules. For the Logical Reasoning
section, students were taught basic logic principles (such as modus
ponens and modus tollens), as well as how to avoid common log-
ical fallacies. Students attempted problems at home and then
instructors worked through the problems in class, answering any
questions students might have. Special attention was paid to keep-
ing motivation levels high by making the content fun through
relatable examples.

Four LSAT practice tests were administered throughout the
course. Practice test scores were provided either by the partic-
ipants or (with participants’ consent) by the test preparation
company. We compared the scores on each of the LSAT sections
for the first and fourth practice test as an index of change from
time 1 to time 2.

VOXEL-BASED MORPHOMETRY ANALYSIS
To rule out the possibility that gray matter changes associated
with training could be misinterpreted as changes in DTI param-
eters, we performed voxel-based morphometry analyses on the
structural data from the trained group using Functional MRI
of the Brain Software Library (FSL) (Ashburner and Friston,
2000; Good et al., 2001; Smith et al., 2004). Structural images
were skull-stripped using Brain Extraction Tool (BET) (Smith,
2002), and tissue-type segmentation was carried out using
FMRIB’s Automated Segmentation Tool (FAST)4 (Zhang et al.,
2001). Gray-matter partial volume images were then aligned
to standard space using FSL’s Linear Image Registration Tool
(FLIRT) (Jenkinson and Smith, 2001; Jenkinson et al., 2002),
followed by nonlinear registration using FMRIB’S Nonlinear
Image Registration Tool (FNIRT) (Andersson et al., 2007a,b),
which uses a b-spline representation of the registration warp field
(Rueckert et al., 1999). The resulting images were averaged to
create a study-specific template, to which the native grey matter
images were then non-linearly re-registered. The registered
partial volume images were then modulated (to correct for local
expansion or contraction) by dividing by the Jacobian of the warp
field. The modulated segmented images were then smoothed
with an isotropic Gaussian kernel with a sigma of 4 mm. Finally,
a voxel-wise paired t-test GLM comparing pre-training to
post-training data was applied using Randomise (Nichols and
Holmes, 2002) with 5000 permutations, correcting for multiple
comparisons at P < 0.05.

DTI DATA ACQUISITION AND PREPROCESSING
Data were acquired on a three Tesla Siemens Trio TIM MR
scanner using a 12-channel head coil with a maximum gradient

strength of 40 mT/m. Structural and functional scans were col-
lected in a fixed sequence across subjects and across time points.
DTI data were acquired using echo-planar imaging (EPI; TR =
7900 ms; TE = 102 ms; 2.2 mm3 isotropic voxels; 55 axial slices).
Parallel acquisition (GRAPPA) was used with at an acceleration
factor of 2. Seven non-diffusion-weighted directions and 64
diffusion-weighted directions were acquired with a b-value of
2000 s/mm2, uniformly distributed across 64 gradient directions.

Analyses were performed using tools from FDT (Functional
MRI of the Brain (FMRIB) Diffusion Toolbox, part of FSL 4.1;
Smith et al., 2002; Woolrich et al., 2009). Brain volumes were
skull-stripped using the BET (Smith, 2002). A 12-parameter
affine registration to the b = 0 weighted volume was applied to
correct for head motion and eddy current distortions introduced
by the gradient coils, and the gradient directions were rotated
accordingly. A diffusion tensor model was fitted to the data in a
voxel-wise fashion to generate whole-brain maps of AD, RD, MD,
and FA.

The first volume of our DTI acquisition had no diffusion
weighting and was used to align the DTI scans at both time
points to each other using a 12 parameter affine transforma-
tion and skull images to constrain the registration scaling using
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Both
images were resampled into a space halfway between the two. This
transformation was then applied to the FA maps and the aligned
maps averaged to generate a subject-specific mid-space template.
We subsequently non-linearly aligned these template FA maps
into standard space using FNIRT (Andersson et al., 2007a,b).
Whole-brain MD, AD, and RD maps were aligned to standard
space through application of the same two-step transform (lin-
early into subject-template space, then non-linearly into standard
space).

A white matter mask was created from each subject’s high
resolution T1-weighted scan, after brain extraction, using FAST
(Zhang et al., 2001). This mask was transformed into the sub-
ject’s DTI space by applying the inverse of the affine registration of
the non-diffusion weighted volume to the high resolution image.
Both the registration and calculations of the inverse transform
used FLIRT (Jenkinson et al., 2002). Once in DTI space, the
white matter masks were registered to subject-template space and
combined (through multiplication) to create a subject-specific
definition of white matter voxels.

DTI ANALYSES
We performed voxel-wise statistical analysis using TBSS (Tract-
Based Spatial Statistics, Smith et al., 2006). After FA maps were
aligned to standard space, the mean FA image was generated and
thinned to produce a mean FA skeleton that represented the cen-
ters of all tracts common to the group. Each subject’s aligned
FA, AD, RD, and MD data were then projected onto this skele-
ton by finding the nearest maximum FA value for the individual.
This projection step aims to remove the effect of cross-subject
spatial variability that remains after the non-linear registration.
Skeletonized difference images (time 2–time 1) were created for
each subject, and the resulting data were fed into an unpaired
t-test to compare the trained group to the control group. Voxel-
wise cross-subject permutation-based nonparametric statistics
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were performed using Randomise (Nichols and Holmes, 2002)
with 5000 permutations and threshold-free cluster enhancement
to correct for multiple comparisons at P < 0.05 (Smith and
Nichols, 2009). We used the same statistical approach to test for
pre-training differences between groups (unpaired t-test of time
1 data).

To better characterize the anatomy of white matter showing
an effect of training, we examined a recently developed tensor
index used to identify regions of crossing fibers (Douaud et al.,
2011): the mode of anisotropy (Ennis and Kindlmann, 2006).
Regions with a positive mode have linear anisotropy, and are
likely to be part of a highly directional tract. In contrast, regions
with a low or negative mode can be described as having pla-
nar anisotropy, and are more likely to contain crossing fibers.
We extracted mode of anisotropy values from voxels that were
significant in the whole-brain analyses, as well as mode values
across the entire white matter skeleton. Specifically, we extracted
values from the average of all time 1 and time 2 mode maps
after they had been registered into the standard space by follow-
ing the same two-step registration process as described above.
Histograms with a bin width of 0.01 were created using fslstats,
an FSL tool (Smith et al., 2004). We used a Mann-Whitney
U-test to investigate differences in the distributions of mode
values within each of the results regions and the white matter
skeleton.

We tested for correlations between LSAT improvement, as
measured by the difference between the first and fourth practice
test, and diffusion changes at the whole brain level following the
approach described above. We then tested for brain-behavior cor-
relations in the anatomical regions defined by the Johns Hopkins
University White Matter Label Atlas (Mori, 2005). While we pre-
dicted correlations in frontoparietal white matter, we decided
to perform an exploratory analysis because we considered that
brain-behavior relationships might be most prominent in tracts
less centrally involved in reasoning. Therefore, we tested all 48
labels and corrected all statistics for multiple comparisons using
a randomization-based family-wise error correction (Nichols and
Hayasaka, 2003).

White matter labels were nonlinearly registered to subject-
template space (halfway between time 1 and time 2 for each
subject, described above) using the inverse of the transform pre-
viously used to register subject data to standard space. Then,
the average value of all voxels which lay within each ROI and
the subject-specific white matter mask was extracted separately
from each map. A difference measure was calculated by sub-
tracting the average value for time 1 from the average value for
time 2.

We also applied this process to calculate the average difference
values for FA, AD, RD and MD in the voxels that reached
significance in the whole brain analyses (see inset in Figure 1).

FIGURE 1 | Results of whole-brain voxel-wise statistics. Decreases in RD
are shown in green, and decreases in MD are shown in blue. Statistics were
performed on skeletonized images, and results were filled for visualization
purposes. Results are thresholded at P < 0.05, corrected for multiple
comparisons with threshold-free cluster enhancement (Smith and Nichols,
2009). Inset shows percent change in diffusion measures extracted from

voxels showing a significant decrease in RD (left) and MD (right) for the
trained group only. Error bars represent standard error of the mean. No
statistics are performed as they would be biased because values are
extracted from voxels showing a significant change in diffusion at the whole
brain level. The graph is meant to show qualitative differences in diffusion
parameters between RD and MD results.
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RESULTS
BEHAVIORAL IMPROVEMENT
For participants for whom all four practice test scores were avail-
able (n = 16), training was associated with a gain of nine points
on the LSAT (P < 0.001, df = 15, t = 6.59). Subtest data was
available for 13 participants. These participants improved sig-
nificantly on the two reasoning components of the test, Logic
Games (P < 0.01, df = 12, t = 3.21) and Logical Reasoning
(P < 0.001, df = 12, t = 4.91). They also improved slightly on
Reading Comprehension (P = 0.03, df = 12, t = 2.45). LSAT
improvement was significantly correlated with the reasoning sub-
test scores (LG: R = 0.85, P = 0.0002; LR: R = 0.68, P = 0.01),
but not with RC (R = 0.5, P = 0.08), suggesting that changes in
LSAT scores were driven by reasoning gains.

CHANGES IN DIFFUSION MEASURES
The trained and control groups did not differ at time 1 on any
of the diffusion measures (FA, RD, AD, and MD). The groups
also did not differ on grey or white matter volume at either time
1 or time 2. Further, we did not observe a significant effect of
training on grey/white matter classification within the trained
group.

Whole-brain voxel-wise statistical analyses revealed signifi-
cant decreases in RD and MD (but not in FA or AD) from
time 1 to time 2 for the trained group compared to the con-
trol group, as described below. RD decreases were observed in
white matter connecting frontal cortices (genu, anterior body of
the corpus callosum, anterior corona radiata), and in descending
white matter, including superior corona radiata, anterior internal
capsule, and ventral brainstem (Figure 1, green). Training-related
decreases in MD were generally more lateral, and closer to cor-
tex, with the exception of decreases through anterior callosum
(Figure 1, blue). MD decreases were particularly notable in white
matter underlying left frontal cortex, including left RLPFC (see
Figure 1, Z = 0), and right parietal cortex (Figure 1, Z = 30,
X = 35).

When we extracted all four diffusion measures (FA, AD, RD,
and MD) for the trained group from the voxels showing signifi-
cant changes in RD (Figure 1, inset, left) and MD (Figure 1, inset,
right), different patterns emerged. On average, voxels showing a
decrease in RD also showed an increase in FA, which was likely
not significant at the whole-brain level because of a slight con-
comitant decrease in AD. In contrast, voxels showing a significant
decrease in MD showed roughly equal decreases in AD and RD,
and therefore, no trend towards a change in FA.

Locations of RD and MD changes according to the JHU White
Matter Label Atlas are shown in Tables 2 and 3, respectively.
While 85% of the voxels showing a decrease in RD were classi-
fied by the JHU atlas, only 35% of the voxels showing a decrease
in MD fell into a white matter label, likely because this atlas clas-
sifies primarily deep white matter and not white matter nearer
to cortex. Importantly, because TBSS analyses test voxels along a
white matter skeleton, we tested only voxels that were solidly in
white matter, and not those contaminated by gray matter.

In addition to an apparent difference in spatial distribution,
we were interested to know whether the distribution of mode
of anisotropy, a proxy measure for the presence of crossing

Table 2 | Locations of voxels showing RD decreases.

White matter label Number of voxels

Anterior limb of internal capsule, R 526

Genu of corpus callosum 332

Superior corona radiata, R 254

Body of corpus callosum 178

Cerebral peduncle, R 178

Anterior corona radiata, R 172

Superior corona radiata, L 170

Anterior corona radiata, L 136

Corticospinal tract, R 133

Posterior limb of internal capsule, R 75

Superior cerebellar peduncle, R 68

Superior fronto-occipital fasciculus, R 67

Middle cerebellar peduncle 54

Posterior corona radiata, R 41

Pontine crossing tract 37

Splenium of corpus callosum 37

Medial lemniscus, R 13

Superior longitudinal fasciculus, R 5

External capsule, R 2

Total labeled voxels 2478

Total voxels 2912

Voxels are 1 mm3. L = left, R = right.

Table 3 | Locations of voxels showing MD decreases.

White matter label Number of voxels

Anterior corona radiata, L 468

Superior corona radiata, L 299

Superior longitudinal fasciculus, R 266

Genu of corpus callosum 253

Body of corpus callosum 224

Superior longitudinal fasciculus, L 100

External capsule, R 99

Superior corona radiata, R 37

Uncinate fasciculus, R 13

Anterior limb of internal capsule, L 3

Superior fronto-occipital fasciculus, L 1

Total labeled voxels 1763

Total voxels 4989

Voxels are 1 mm3. L = left, R = right.

fibers, differed between voxels showing a significant decrease
in RD and MD. Figure 2 shows histograms of mode values
for voxels showing changes in RD (green) and MD (blue).
Mode values for the entire white matter skeleton are shown for
comparison (black). Voxels showing a decrease in RD have a
median mode (Mdn = 0.70) that is significantly greater than
the median mode of the white matter skeleton (Mdn = 0.48,
Mann–Whitney U = 1.19 × 108, df = 121,805, P = 1.35 ×
10186), providing evidence that RD changes occurred in highly
directional tracts. In contrast, voxels showing a decrease in
MD have a median mode slightly lower than the whole white
matter skeleton (Mdn = 0.44, U = 2.78 × 108, df = 123,882,
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FIGURE 2 | Distribution of diffusion mode for whole-brain

results. Histograms showing percentage of voxels with a given
mode value were calculated for voxels that exhibited a significant
training effect at the whole-brain level in RD (green) or MD (blue).

For comparison, a histogram of mode values for the entire white
matter skeleton is shown (black). Median mode for each set of voxels
is marked by a vertical line (RD: green, MD: blue, white matter skeleton:
black).

P = 2.93 × 10−21), suggesting that MD changes were more likely
to occur in regions with crossing fibers. The peak in mode values
above 0.9 comes principally from voxels in the anterior callo-
sum. Importantly, only 5% of RD results and 6% of MD results
have a negative mode, so excluding these voxels from the analysis
because they were not fit well by the standard linear tensor would
not appreciably alter the results.

DIFFUSION-BEHAVIOR CORRELATIONS
We tested for significant correlations between behavioral
improvement and diffusion changes at the whole-brain level,
but did not find significant results (P < 0.05 after correcting for
multiple comparisons). We then tested for correlations between
diffusion and LSAT improvement within ROIs defined from the
JHU White Matter Atlas. This analysis revealed a significant nega-
tive correlation between change in MD and change in LSAT score
in the retrolenticular part of the right internal capsule [Figure 3,
Spearman’s rho = −0.667, P(uncorrected) = 0.005]. This corre-
lation was significant after a randomization -based family-wise
error correction for 48 comparisons (Nichols and Hayasaka,
2003), as we tested each of the regions in the JHU White Matter
Label Atlas [P(corrected) = 0.02].

DISCUSSION
In this study, we sought to test whether three months of reason-
ing training altered white matter microstructure. While we found

FIGURE 3 | Correlation between LSAT improvement and MD decrease.

LSAT change and MD change were significantly negatively correlated
[Spearman’s rho = −0.667, P (uncorrected) = 0.005, P (corrected) = 0.02] in
the right retrolenticular part of the internal capsule, an anatomical ROI
defined from the JHU Label Atlas. Slices shown are: X = 27, Y = −29,
Z = 10.
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no changes in white matter volume, we observed training-related
changes in diffusion parameters within white matter. Indeed,
our results show that reasoning training led to decreased RD in
white matter connecting frontal cortices, and decreased in MD
in white matter underlying left frontal and right parietal cortices.
These experience-dependent changes fall into tracts that would
be predicted by prior work showing that reasoning relies on an
interhemispheric frontoparietal network (for review, see Prado
et al., 2011). Our findings are also consistent with the view that
reasoning is largely left-hemisphere dominent (e.g., Krawczyk,
2012), but that homologous cortex in the right hemisphere can be
recruited as needed to support complex reasoning. Perhaps learn-
ing to reason more efficiently involves recruiting compensatory
neural circuitry more consistently.

Relationships between diffusion changes and LSAT changes
were not particularly robust, perhaps because neuroplastic
changes were driven by experience shared across individuals. We
found an unpredicted negative correlation between change in MD
and improvement on the LSAT in the retrolenticular part of the
right internal capsule (white matter that interconnects posterior
cortices and thalamus) as well as corticopontine fibers originat-
ing in the right parietal lobe (Nolte, 2009). Future research with
a larger sample size will be needed to determine whether these
brain-behavior correlations are replicable, and whether there
are any additional statistically significant relationships between
diffusion change and reasoning improvement.

The results featured here meet a more conservative criterion
than several prior training studies, in that changes in the trained
group needed to surpass changes in the control group to be
considered significant. The participants in our study were, on
average, in their early twenties, and developmental changes in
white matter are known to occur during this age range (Lebel
et al., 2008). Additionally, both groups consisted largely of
university students, and their academic experiences over the
course of 3 months alone could have altered their white matter
microstructure. Thus, changes that were significantly greater in
the trained group than in a well-matched control group provide
strong evidence for experience-dependent plasticity, and not
simply maturational changes.

An active control group is often preferable to a passive control
group in training studies, because it controls for general factors
like beliefs about how much one is learning or improving on
a task. For this study, however, selecting an appropriate active
control group for this study would have been difficult as most
adults would not choose to spend 100 hours over 3 months train-
ing on a skill that is not directly relevant to their life goals. Had
we administered an artificial active control training program in
the lab, differences between groups in neuroanatomical changes
could have been confounded by differences in levels of motivation
and attention. Alternatively, if our control group had consisted
of individuals enrolled in a different professional training course,
such as the Medical College Admission Test (MCAT), we might
have encountered initial group differences based on differences
in interests, coursework, and experiences that would predispose
students to seek admission to one professional program over
another.

In this paper, we have examined changes in four measures of
diffusion. On the one hand, this broad approach introduces a
multiple comparison problem that would not exist if we had sim-
ply investigated changes in a single measure. On the other hand,
if we had only looked at one measure, we would have painted
a limited picture of white matter plasticity. Further, we did not
have strong reason to believe that one index of white matter
microstructure was more important or more likely to change with
training than the others.

It is important to recognize that a tract defined by an atlas does
not necessarily reflect an individual’s anatomical tract. Rather, it
reflects where tracts lie on average across individuals. At the cur-
rent resolution, it is not possible to determine whether any given
voxel contains axons connecting, for example, bilateral motor cor-
tices or frontal and parietal cortices. Advances in diffusion imag-
ing, such as diffusion spectral imaging (DSI), may make it possi-
ble to better classify the principal direction(s) of each voxel that
shows a quantified change in diffusion. However, these sequences
have yet to be used in the context of research on neuroplastic-
ity. As the required scan time for advanced diffusion imaging
pulse sequences decreases, and as scanners employ stronger gradi-
ents, it should become feasible to include more sensitive measures
of white matter microstructure in studies of neuroplasticity that
involve multiple structural and functional brain scans.

Even with advances in imaging methodology that make it pos-
sible to determine the direction of diffusion precisely, the study
of white matter plasticity in humans will still be limited by the
scale at which we can observe neuroanatomical changes. The cel-
lular basis for training-induced changes in diffusion in humans
is and will remain unclear, at least for the foreseeable future,
though it is possible to speculate about potential mechanisms
based on plasticity observed in animals (see Zatorre et al., 2012
for review).

Studies in animals have shown that both decreased RD and
increased FA are related to increased myelination (Vorisek and
Sykova, 1997; Zhang et al., 2009; Blumenfeld-Katzir et al., 2011).
It is possible, then, that the experience-dependent decreases in RD
(and increases in FA) that we observed were driven by myelina-
tion, especially because they tended to be in highly directional,
heavily myelinated tracts. However, it is important to note that
while myelin does affect diffusion (Mottershead et al., 2003;
Concha et al., 2010), unmyelinated axon membranes do as well
(Partridge et al., 2004), and myelin volume and axon counts
are very highly correlated (Schmierer et al., 2007; Concha et al.,
2010). Therefore, the extent to which axonal cell membranes also
constrain diffusion is unclear.

Decreased MD, on the other hand, has been related to pro-
liferation and/or growth of astrocytes (Blumenfeld et al., 2006;
Sagi et al., 2012). A reduction in MD could additionally or alter-
natively reflect the myelination of axons traveling in multiple
directions. It is therefore intriguing that we observed decreased
MD near cortex, and also in white matter that was not highly
directional and therefore could contain crossing fibers. Hopefully,
future research linking changes in cell structure and function to
plasticity in large-scale networks will further our understanding
of how experience shapes the anatomy of the human brain.
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