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Cerebrospinal fluid is routinely collected for the diagnosis
and monitoring of patients with neurological malignan-
cies. However, little is known as to how its constituents
may change in a patient when presented with a malignant
glioma. Here, we used a targeted mass-spectrometry
based metabolomics platform using selected reaction
monitoring with positive/negative switching and profiled
the relative levels of over 124 polar metabolites present in
patient cerebrospinal fluid. We analyzed the metabolic pro-
files from 10 patients presenting malignant gliomas and
seven control patients that did not present malignancy to
test whether a small sample size could provide statistically
significant signatures. We carried out multiple unbiased
forms of classification using a series of unsupervised tech-
niques and identified metabolic signatures that distinguish
malignant glioma patients from the control patients. One
subtype identified contained metabolites enriched in citric
acid cycle components. Newly diagnosed patients segre-
gated into a different subtype and exhibited low levels of
metabolites involved in tryptophan metabolism, which may
indicate the absence of an inflammatory signature. To-
gether our results provide the first global assessment of the
polar metabolic composition in cerebrospinal fluid that ac-
companies malignancy, and demonstrate that data ob-
tained from high throughput mass spectrometry technology
may have suitable predictive capabilities for the identifica-
tion of biomarkers and classification of neurological
diseases. Molecular & Cellular Proteomics 11: 10.1074/
mcp.M111.014688, 1–12, 2012.

Patients with malignant gliomas (MG)1 have poor progno-
sis. Those with glioblastomas have a median survival of 14.6

months and 5-year survival is only 9.8% despite aggressive
treatment with temozolomide chemo-irradiation (1). Patients
with anaplastic gliomas have a slightly better prognosis with a
median survival of 3 to 10 years depending on the molecular
genetics of the tumor (2, 3). Therefore, having a means of
inquiring the biological state of the malignant glioma would
guide the application of proper treatment. Despite the high
resolution of magnetic resonance imaging (MRI), only macro-
scopic structural information is obtained and this measure-
ment does not reveal the underlying biology of the malignant
glioma. Although tumor tissue analysis performed serially over
time is possible, brain biopsies have inherent sampling errors
because of the heterogeneous nature of the tumor and resec-
tions may lead to neurological deficits (4, 5).

These limitations led us to search for an improved and/or
complementary method of evaluating malignant gliomas us-
ing biomarkers in the cerebrospinal fluid (CSF). Because the
CSF bathes the tissues of the central nervous system (CNS),
it provides an attractive source of material for clinical diag-
nostics. CSF is readily accessible either by lumbar puncture
or reservoir sampling, which is less invasive and can be per-
formed serially and may potentially yield a more integrated
view of the tumor’s activity (6, 7). As a result, CSF-derived
biomarkers may provide an earlier diagnosis than MRI, obvi-
ate invasive procedures, offer information on the tumor’s bi-
ological state, prognosticate patient survival, and/or predict
treatment responses.

CSF derived from patients presenting malignant gliomas
may contain signatures of altered metabolism known to occur
in tumor cells and may further harbor signatures of secondary,
noncell-autonomous effects that arise from the tumor mi-
croenvironment (8–11). Such physiological processes include
inflammation, endocrine pathophysiology, and cellular debris
resulting from necrotic cells that accumulates as a byproduct
of disrupted tissue architecture (12).

Metabolic profiling has also been used as a diagnostic tool
in the setting of human cancer. Studies of metabolites from
patient urine that were discovered using metabolomics tech-
nology have recently come into focus as possible biomarkers
for metastatic prostate cancer and renal cell carcinoma (13,
14). For example, one study used mass spectrometry to probe
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the metabolic composition of urine in patients with prostate
cancer at different stages of the disease. The study identified
a collection of metabolites that correlated with advanced
metastatic prostate cancer including glycine and N-methyl-
glycine (sarcosine) (13).

There is additional motivation for the study of metabolism in
the biological fluid of cancer patients, given extensive evi-
dence of altered cellular metabolism during tumorigenesis. In
particular there is increasing evidence that many of the recur-
rent genetic alterations that contribute to the pathogenesis of
gliomas induce changes in cellular metabolism (15). Recurrent
genetic events in glioma such as MYC amplification, PTEN
deletion or protein loss and EFGR amplification have multiple
downstream metabolic targets (16). Also the metabolic genes
IDH1 and IDH2 are mutated in �12% of primary gliomas
through a gain-of-function mutation that alters the enzymatic
activity of the protein product that results in the production of
2-hydroxyglutarate (17). It is therefore likely that the metabolic
alterations observed in malignant glioma cells may propagate
to global changes in the composition of CSF.

Recent metabolic profiling of CSF has revealed a rich com-
position of diverse metabolites present in high concentrations
in normal patient CSF (18–23). Further clinical studies have
found alterations in the composition of CSF under patholog-
ical conditions. One study identified gross alterations in met-
abolic profiles in patients diagnosed with schizophrenia (24).
Another study showed that macaques infected with simian
immunodeficiency virus undergo detectable changes in the
composition of their CSF (25). Together, these studies sug-
gested that current metabolomics technology may allow for
the possibility of detecting alterations in the CSF of patients
with malignant gliomas that could serve as useful biomarkers
and/or assisting with diagnosis.

Using a liquid chromatography/tandem mass spectrometry
(LC-MS/MS) based platform employing selected reaction
monitoring (SRM) with positive and negative ion switching
using a 5500 QTRAP hybrid dual quadrupole linear ion trap
mass spectrometer (Qq-IT) (26–30), we investigated whether
we could identify unique molecular features in the CSF of
patients with malignant gliomas using a limited sample set.
The platform utilizes hydrophilic interaction chromatography
(HILIC) at pH � 9.0 (31, 32). 254 unique polar metabolites
from 285 SRM scans were targeted from a single 16-min
experiment without chromatographic scheduling. The plat-
form was designed to include as many polar metabolites that
we could that cover major metabolic pathways including gly-
colysis, TCA cycle, the pentose phosphate pathway, amino
acid metabolism, nucleotide metabolism, etc. to study cancer
cell metabolism. We robustly quantified the relative levels of
124 water-soluble metabolites using microliter quantities (250
�l) of patient CSF in a cohort of patients with malignant
gliomas and a control cohort without any malignancy. Many of
these metabolites overlap with those detected in previous
CSF metabolomics studies referenced above. Using multiple

computational algorithms to classify the data in an unbiased
manner, we identified significant differences in the metabolite
composition between patients with the disease and controls,
as well as those with newly diagnosed and recurrent malig-
nant gliomas. Together, our findings demonstrate that the
metabolite composition of the CSF may provide clinically
relevant biomarkers and may provide insights into the mech-
anisms underlying the pathogenesis of malignant gliomas.
Ultimately, these findings would provide a basis for additional
clinical studies that can determine the sensitivity and speci-
ficity, as well as the predictive value, of the metabolite bio-
markers identified in the CSF.

EXPERIMENTAL PROCEDURES

Patients and CSF—Aliquots of 5–10 ml of CSF were obtained from
male and female patients aged 27 through 67 and of varying disease
state in the Brain Tumor Clinic at Beth Israel Deaconess Medical
Center (BIDMC) by ETW and staff. CSF samples were collected at the
time of neurological evaluation when there was an indication for
lumbar puncture or sampling from a ventricular reservoir. All samples
were collected from lumbar puncture except one (patient 3 in Table I)
whose CSF was taken from a ventricular drain. Patient consents were
obtained for CSF storage and CSF biomarker analysis under institu-
tional review board (IRB)-approved protocols at BIDMC. Samples
were stored at �80 °C until the time of the experiment. Other clinical
CSF parameters, such as white blood cell (WBC) count, total protein
level, glucose level, LDH level, and cytology were also tabulated. New
versus recurrent diagnosis, survival time, tumor size estimated
through MRI, and survival status at end of study, age, and gender
were also recorded.

Sample Preparation—Two hundred and fifty microliters of CSF
were subjected to overnight precipitation in 80% methanol at �20 °C
followed by centrifugation at 13,000 rpm for 10 min at 4 °C. Super-
natants were collected and dried under vacuum and reconstituted in
50 �l of 95:5 LC/MS grade water/HPLC grade acetonitrile and then
cleared by centrifugation at 13,000 rpm for 5 min. Supernatants were
then dried to a pellet using a SpeedVac (Thermo Fisher Scientific) and
stored at �80 °C for analysis.

Targeted Mass Spectrometry—Samples were resuspended using
20 �l LC/MS grade water for mass spectrometry. Ten microliters were
injected and analyzed using a 5500 QTRAP triple quadrupole mass
spectrometer (AB/SCIEX) coupled to a Prominence UFLC HPLC sys-
tem (Shimadzu) via SRM of a total of 285 SRM transitions using
positive and negative polarity switching corresponding to 254 unique
endogenous water soluble metabolites. Some metabolites were tar-
geted in both positive and negative ion mode. Electrospray ionization
voltage was �4900V in positive ion mode and �4500V in negative ion
mode with a source temperature of 475 °C. The dwell time was 4 ms
per SRM transition and the total duty cycle time for all metabolites
was 1.89 s resulting in �9–12 data points acquired per detected
metabolite. Samples were delivered to the 5500 QTRAP using a 2.0
mm i.d � 15 cm Luna NH2 hydrophilic interaction chromatography
(HILIC) column (Phenomenex, Torrance, CA) at 300 �l/min. Gradients
were run starting from 85% buffer B (HPLC grade acetonitrile) to 40%
B from 0–5 min; 40% B to 0% B from 5–16 min; 0% B was held from
16–24 min; 0% B to 85% B from 24–25 min; 85% B was held for 7
min to re-equilibrate the column. Buffer A was comprised of 20 mM

ammonium hydroxide/20 mM ammonium acetate (pH � 9.0) in 95:5
water/acetonitrile. Peak areas from the total ion current for each
metabolite SRM transition were integrated using MultiQuant version
1.1 software (AB/SCIEX) via the MQ4 peak integration algorithm using
a minimum of eight data points with a 30 s retention time window.
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Computational Analysis—All calculations were carried out using the
R programming suite (http://www.r-project.org/). The resulting inte-
grations from the MultiQuant software provided a starting point for
subsequent analyses. All metabolites undetected in at least one sam-
ple were excluded from the analysis. We chose this more conserva-
tive convention because we found it to be more robust than consid-
ering imputations for undetected metabolites, which can lead to
statistical artifacts. This pruning step reduced the number of metab-
olites to 124. Principal components analysis (PCA) on the peak inte-
grations was carried out using the prcomp() method in the R statistical
computing language (http://www.r-project.org/). As is standard, data
were normalized to the mean and data transformed to standard units.
To assess the statistical significance, we used a Monte Carlo analysis.
We considered a set of n � 100,000 random matrices with normally
distributed matrix elements of mean and variance identical to that of
the original data. We computed the eigenvalue spectrum of each
matrix and a histogram for each principal component. p values were
obtained by comparing the eigenvalues for each principal component
in the actual data to the histogram obtained from random data. p
values were found to be 7.7 � 10�15, 2.6 � 10�5, and 1.8 � 10�9

respectively for the three largest components. Pathway analysis using
the KEGG (www.genome.jp/kegg/) pathway database was carried out
using metaboanalyst (www.metaboanalyst.ca) (33). The absolute
value of the coefficients (loadings) for each component was obtained
and then ranked from highest to lowest. The top 40 values were used
for the pathway analysis. The overlay of the k-means clustering was
carried out using the kmeans() method in R. k � 3 clusters were
obtained starting with three partitions using 20 iterations to ensure
convergence. Hierarchical clustering was performed using Ward’s

method in the hclust() method that minimizes the variance in each
cluster (34). All reported R2 values were obtained from Pearson cor-
relations. p values were obtained using two-tailed t test statistics
except for the principal components analysis for which a one-tailed
statistic was used.

Ethics Approval—The research study described here was per-
formed under IRB-approved protocol #: 2007-P-000381/2 at BIDMC
(Federal Wide Assurance # 00003245). This certifies that the research
study referenced was authorized by the IRB for research involving
human subjects. All administrative requirements for the above refer-
enced protocol have been met.

RESULTS

Study Design and Metabolomics Platform—CSF was col-
lected from patients (Table I) as part of their routine clinical
care under an institutionally approved IRB protocol. Among
the 10 patients with malignant gliomas, four had newly diag-
nosed and six had recurrent disease (Table I). There were six
glioblastomas, two anaplastic astrocytomas, and two ana-
plastic oligoastrocytomas (Table I). CSF samples from seven
control subjects without any malignancy were also analyzed.
All samples were collected from lumbar puncture except one
(patient 3 in Table I) whose CSF was taken from a ventricular
drain.

In the Qq-IT triple quadrupole system that employs SRM,
the first quadrupole isolates a precursor ion and transfers it

TABLE I
(A) Clinical profile of patients with malignant gliomas and (B) their CSF profiles. GBM, glioblastoma; AOA, anaplastic oligoastrocytoma; and AA,
anaplastic astrocytoma; XRT, radiation therapy; TMZ, temozolomide; and CPT-11, irinotecan. Newly Diagnosed (N), Recurrent (R). �(Initial–
Sample Date) (time from diagnosis to sample collection). WBC–White Blood Cell Count (number/�l), Protein (mg/dL), Glucose (mg/dL), LDH

(International Units/L). T1 GAD–2D tumor size estimate from Gadolinium MRI. FLAIR–2D tumor size estimate from FLAIR MRI

A

Patient Age Gender DIAGNOSIS
Newly Diagnosed

or Recurrent
� (Initial - Sample Date)

(months)
Survival (months)

1 61 M GBM N 0 8
2 59 M GBM N 0 9
3 45 F AOA R 34 34
4 67 M GBM R 9 17
5 57 M AOA N 0 21
6 27 F AA R 3 27
7 55 M GBM N 0 37
8 41 F AA R 8 27
9 52 M GBM R 7 18
10 46 F GBM R 12 14

B

Patient WBC Protein Glucose LDH T1 Gad (cm2) FLAIR (cm2) � (FLAIR - T1 Gad) (cm2) Treatment

1 2 23 63 11 1 23.8 22.8
2 2 47 70 9 5.7 37.6 31.9
3 3 209 87 N/A 9 39.1 30.1 XRT, TMZ, Avastin, CPT-11
4 1 96 67 56 23.9 43.6 19.7 XRT, TMZ, ZD6474,

NovoTTF
5 2 63 63 19 0.7 11.6 10.9
6 3 61 93 N/A 2.6 3.7 1.1 XRT, TMZ
7 1 51 73 26 1.2 36.5 35.3
8 5 57 77 22 0.6 13.2 12.6 XRT, TMZ, Avastin, CPT-11
9 1 41 63 N/A 17.6 28.5 10.9 XRT, TMZ, NovoTTF
10 4 158 76 56 10.2 37.6 27.4 XRT, TMZ, CPT-11
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into the second quadrupole for fragmentation via collision
induced dissociation whereby the third analyzer (linear ion
trap) then isolates a selected fragment ion for quantitative
analysis. Positive and negative ion switching was possible
because of the 50 millisecond (msec) switch time and 4 msec
dwell time in the 5500 QTRAP. The entire duty cycle for 285
SRM scans were performed in �1.89 s. Approximately nine to
12 data points were collected per peak with �8–9 s peak-
width at half height.

Metabolomics of Patient-derived CSF—Using our metabo-
lomics platform, we robustly (observed recorded peak area
intensity across each patient sample having a signal-to-
noise � 2:1) measured over 124 polar metabolites from 17
samples (10 malignant gliomas and seven controls) in total
from patient CSF (supplemental Table S1). An analysis of the
distribution of intensities of the recorded concentrations
showed approximately a log-normal distribution (Fig. 1A). An
inspection of the width of the distribution showed a dynamic
range of �4 orders of magnitude (Fig. 1A). To understand the
extent of variation in the data, the coefficient of variation
(standard deviation/mean) or CV was computed for each me-
tabolite. An analysis of the histogram revealed that metabolite
CV’s are concentrated from 0.25–0.75 (Fig. 1B). An analysis of
the average intensities of the malignant glioma samples plot-

ted against control samples revealed substantial differences
in the average metabolite intensities (Fig. 1C). Eighty-six me-
tabolites were on average higher in the malignant glioma
samples and 38 metabolites were higher on average in the
control samples. These differences can be better visualized
when plotting the histogram of intensities in control samples
(blue) and compared with MG samples (gray) (Fig. 1D). From
the histograms, it is apparent that gross similarities (Kullback-
Leibler (K-L) divergence � 0.0017) in the metabolite intensities
of malignant gliomas and controls are obtained suggesting
that metabolites levels are typically on the same order of
magnitude in control versus MG subjects. These differences
in intensities could further be observed by analyzing the dif-
ferences in the coefficient of variation (CV), as expressed by
histogram (Fig. 1E), of controls and MG patients. Interestingly,
the histograms of the CV exhibited a larger divergence (K-L
divergence � 0.26) demonstrating that the MG patients
showed more variability in their metabolite composition. This
finding suggested that better-distinguished subtypes of me-
tabolite composition might be obtained in MG samples than
in control samples. These observations also indicate that a
diverse set of metabolites can be identified in a small vol-
ume (less than or equal to 250 �l) of CSF. Thus, a mass-
spectrometry based metabolomics analysis of CSF could

FIG. 1. Data collection and analysis. A, Histogram of the log-intensities of polar metabolites measured by targeted LC-MS/MS across 17
samples. B, Histogram of coefficient of variation (CV) of measured metabolites across 17 samples. C, Scatterplot of average metabolite
intensities of control samples (x axis) against malignant glioma (MG) samples. One hundred and eighteen metabolites lie above the line and
71 below the line showing a statistically significant difference. D, Comparison of histogram densities of the log-intensities of measured
metabolites of MG samples (blue) and control samples (gray). Each histogram was scaled by dividing values by the total count for each to
account for differences in number of data points. Kullback-Leibler (K-L) divergence between the distributions was measured to be 0.0017.
E, Comparison of histogram densitry of the CV (standard deviation/mean) of measured metabolites of MG samples (blue) and control samples
(gray). K-L divergence between the distributions was observed to be 0.29.
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potentially distinguish malignant glioma patients from those
without any malignancy as well as fine structure within the
MG population.

Metabolic Signatures Unique to Malignant Glioma CSF
Samples—An analysis of the metabolite intensities and CVs
revealed that gross differences exist in the small molecule
composition of the CSF from these two patient-cohorts. This
observation led us to analyze global differences in the small
molecule composition. One commonly used method to iden-
tify patterned, global differences in multivariate data sets in-
volves using hierarchical clustering (35–37). Such clustering
methods have been employed to study the organization of
mRNA profiles in different samples in microarray collections
of primary tumors (38). These methods are becoming increas-
ingly appreciated in the oncology clinic for diagnosis and
prognosis (39).

An unsupervised hierarchical clustering algorithm using
Ward’s method (34) that minimizes the variance within clus-
ters was carried out. Analysis of the resulting classification
revealed distinct patterns of metabolites both enhanced and
decreased in malignant glioma CSF samples relative to the
control samples (Fig. 2A). The tree structure (Fig. 2B) revealed
three separate branches corresponding to two classes of

cancer patients and one additional branch corresponding to
the control samples. Interestingly, the CSF samples from
patients that have newly diagnosed malignant gliomas (Table
I) (Patients 1, 2, 5, and 7) form a single cluster that is sepa-
rated in distance from the other samples. Fig. 2C shows
metabolite signatures that contribute to the clusters distin-
guishing MG from control subjects. Therefore, with no a priori
information, this hierarchical classification not only segre-
gated malignant glioma samples from controls, but also pa-
tients who have recurrent disease from those with newly
diagnosed malignant gliomas (Figs. 2A, B). Importantly, these
changes cannot be distinguished from MRI measurements
because there was no correlation between cluster group and
MRI measurements.

To gain additional insights into our ability to classify malig-
nant glioma patients based on the metabolic composition of
CSF, additional unsupervised learning methods were exam-
ined. Although overall, different classification methods should
give consistent results, different methods may reveal different
details about the fine structure of the data. Thus we also
carried out a principal components analysis (PCA). Using
PCA, correlations in the metabolite levels are computed and
the matrix of these correlations is rotated into directions

FIG. 2. Hierarchical clustering of CSF metabolite composition. A, Unsupervised hierarchical clustering of CSF metabolite profiles.
B, Dendrogam obtained from unsupervised hierarchical clustering of CSF metabolite profiles for malignant glioma (MG) and control (Ctrl)
samples. The height of the dendrogram represents Euclidean distance. Boxes are drawn around the three clusters. C, Profiles of three
signatures that distinguish MG from control samples.
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(eigenvectors) that account for the largest sample variance
(40). An analysis of these directions provides an unbiased
means of clustering the samples by accounting for the relative
contribution of each direction to each sample. Metabolites
that comprise the coefficients of these eigenvectors can give
a biological interpretation to the computation by identifying
groups of metabolites that covary.

We first assessed the statistical significance of a PCA anal-
ysis on the raw data. A Monte Carlo algorithm (methods) was
used to compute a distribution of eigenvalues obtained from
random data of equal mean and variance to that of the meas-

ured data. A one-tailed p value for each eigenvalue was
obtained from this distribution. It was found that the first,
second, and third components were highly statistically signif-
icant (*, p � 8.3 � 10�15; **, p � 2.6 � 10�5; and ***, p � 1.8 �

10�9 respectively). Components one, two, and three captured
28.1%, 15.3%, and 13.9% percent of the variance respec-
tively (Fig. 3A).

A loadings plot which contains coefficients of the first two
eigenvectors is shown in Fig. 3B. From inspection of Fig. 3B,
it is apparent that there is overlap in the largest contributing
coefficients but some metabolite contributions are unique to

FIG. 3. Principal component analysis (PCA) of CSF metabolite composition. A, Fraction of variance explained (Fraction variance) plotted
across principal component number. Black bars indicate values obtained from measured data. Green bars indicate average values obtained
from a PCA analysis of n � 100,000 random, normally distributed data of dimension, mean, and variance equivalent to the measured data.
Numerical values of the first three components are shown in the caption for each case. *denotes p � 8.3e-15, ** denotes p � 2.6e-5, *** denotes
p � 1.8e-9. p values were obtained from Monte Carlo simulations. B, Loadings plot obtained from the PCA analysis. Coefficients of
eigenvectors for the first and second principal components are shown. C, Kegg pathway analysis of the first three significant princpal
components. The first column lists the pathway and the second column lists the number of metabolites identified within the pathway for the
top 40 coefficients in magnitude for each principal component. Abbreviations: Phe, Phenylalanine; Tyr, Tyrosine; Ala, Alanine. D, (left)
Projection of individual samples onto the first two principal components. Colors correspond to cluster membership as assigned by k-means
clustering with k � 3. Samples from malignant glioma patients segregate into two groups and the control samples segregate into a separate
group. (right) Representative MRI images of the Tumors from patients in group 1 and group 2.
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each component. To further interpret the components, we
used the KEGG database to interpret the coefficients by over-
laying the top 40 coefficients onto the KEGG metabolic path-
way map (Fig. 3C). From an analysis of the pathways involved
in each principal component, it is apparent that metabolites
from pyrimidine metabolism contribute to both components
(Fig. 3C). Metabolites from the citric acid cycle (n � 5), glu-
coneogenesis (n � 4), and pyrimidine metabolism (n � 4)
appear in the first component. Metabolites from the urea cycle
(n � 4) and pyrimidine metabolism (n � 4) emerge in the
second component. The third component comprises metab-
olites from protein biosynthesis (n � 7), the urea cycle (n � 4),
and purine metabolism. Together, these findings suggest that
distinct, interpretable biological process are defining the gli-
oma samples and accounting for its separation from control
samples.

A scatter plot (scores plot) of the projections of each sam-
ple onto the first two principal components is shown in Fig.
3D. From the scatter plot, it is apparent that two subsets of
malignant glioma patients were identified and they are distin-
guished from the control samples. When a k-means clustering
was overlaid onto each sample by denoting each cluster with
a different color (Fig. 3D), a similar pattern is observed. Thus,
while both the hierarchical clustering and PCA give similar
overall results, each method identified different details within
the data.

We next considered the metabolites that differ overall from
controls to glioma patients. Although the classification algo-
rithms were able to define finer structure in the data which
points to the existence of subtypes, these subtypes (with the
exception of the separation of recurrent and newly diagnosed)
are not yet defined clinically. We therefore chose an overall
comparison since such an analysis could have the most im-
mediate clinical application for diagnostic biomarker discov-
ery. Thirty-nine metabolites significantly changed in the CSF
of the malignant gliomas relative to the control samples using
a more stringent two-tailed t test statistic (p � 0.05) (Fig. 4A,
Table II). These metabolites originate from several metabolic
pathways such as amino acid, lipid, pyrimidine, and central
carbon metabolism. One recently identified metabolite bio-
marker in glioma patients is 2-hydroxyglutarate (2-HG). Inter-
estingly, the level of 2-HG is also several folds higher in
patient 3 which could indicate the presence of an IDH1 mu-
tation in the tumor (17).

The different subtypes of metabolic profiles observed in the
CSF of malignant glioma patients included a group charac-
terized by new diagnosis (Patients 1, 2, 5, and 7) and a set of
two patients (Patients 3 and 10) with recurrent disease that
exhibit a similar profile but have distinct profiles from the other
CSF samples (Fig. 3B). An inspection of the signature of
metabolites that delineates patients 3 and 10 revealed a spe-
cific enrichment in metabolites derived from the citric acid
(TCA) cycle (Fig. 4B). This increase in TCA cycle metabolites
was not observed in other patients suggesting that this sig-

nature may identify a subset of malignant glioma patients at
disease recurrence.

An inspection of metabolites specific to newly-diagnosed
patients revealed seven metabolites that change (p � 0.05) in
this subset relative to the patients with recurrent disease (Fig.
4C). Interestingly, many of these metabolites are involved in
tryptophan and histidine metabolism. These metabolites in-
clude indoleacrylic acid (p � 0.026), indole (p � 0.035), his-
tidine (p � 0.03), and anthranilate (p � 0.017). An enzyme in
this pathway indolamine 2,3 dioxygenase is commonly used
as a biomarker for immune activity (41). Aberrant activity of
this enzyme is also causally implicated in immune-mediated
neurological disorders (42). It is thus likely the alterations in
the concentrations of these metabolites are indicative of im-
mune activity in these patients.

Correlations with Clinical Parameters—Potential clinical ap-
plications of the metabolomics analysis require that the meas-
urements be compared with known methods used in clinical
settings. Because clinical parameters were available for the
patients in this study, we therefore assessed whether the
relative levels of individual metabolites correlated with meas-
ures of tumor size. Two parameters that are used to estimate
tumor size in glioma patients are MRI-based measurements of
T1 relaxation of gadolinium (Tgad) and the T1 relaxation using
fluid attenuation inversion recovery (FLAIR) (43). Although
higher-order, multivariate analyses such as partial least
squares regression are important for describing complex re-
sponses, such analyses to give helpful results would require
larger sample sizes. Therefore we considered univariate
correlations.

We correlated these measurements of tumor-size with me-
tabolites and found that eight metabolites correlated with
Tgad and ten correlated with FLAIR ( R2 � 0.50) (sup-
plemental Table S1, Fig. 4D). Of these metabolites, the levels
of six of these correlated with both measurements. The levels
of four metabolites are correlated positively and two are neg-
atively correlated with tumor size. These metabolites are myo-
inositol (Tgad R2 � –0.69, FLAIR R2 � �0.72), acetylcarnitine
(Tgad R2 � 0.54, FLAIR R2 � 0.67), cytidine (Tgad
R2 � –0.56, FLAIR R2 � –0.62), acetoacetate (Tgad R2 �

0.57, FLAIR R2 � 0.60), phenylpropiolic acid (Tgad R2 � 0.72,
FLAIR R2 � 0.57), and cholesteryl sulfate (Tgad R2 � 0.79,
FLAIR R2 � 0.50).

Another parameter of clinical interest is patient survival. We
therefore assessed metabolites that correlate with patient
survival. Fourteen metabolites were found to correlate with
patient survival ( R2 � 0.50) (supplemental Table S1). Three of
these metabolites (panthothenate, biotin, and taurine) are
common dietary supplements suggesting that the consump-
tion of these compounds can be detected in the CSF. The
other metabolites involve intermediates in nucleotide and
amino acid metabolism (supplemental Table S1).
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DISCUSSION

We present a global polar metabolome analysis of human
CSF from a small cohort of patients with malignant gliomas. In
this study, we tested and show that statistically significant
signatures of glioma and normal patients can be obtained
from a small sample size. The study explored (1) an advanced
positive and negative switching LC-MS/MS platform for the
fragmentation and detection of metabolites, (2) unsupervised
classification algorithms to detect aggregate differences of
metabolites between patient samples, and (3) the inherent
physiology of systemic cancer-associated metabolism. Our
approach achieved success for several reasons. The LC-
MS/MS SRM based platform consists of a highly sensitive
hybrid triple quadrupole MS and allows for chromatographic
separation with selective and ultrafast detection with positive

and negative switching. This is important because clinically
relevant metabolites may exist transiently and in low-abun-
dance due to inherent instability in biological fluids. Also, we
used multiple classification algorithms, including hierarchical
clustering and principle component analysis, which provides
independent validation of signatures that distinguish malig-
nant gliomas from control samples as well as patients with
recurrent and newly diagnosed disease. Lastly, an additional
explanation for the success of our approach might be that
metabolites resulting from abnormal metabolic chemical re-
actions can accumulate in the CSF in an exponential fashion
with respect to the noise. The signal-to-noise ratio of clinically
relevant biomarkers from the metabolomics platform is differ-
ent from that in genomics and proteomics where the rise of
metabolites is exponential, while genetic and protein products

FIG. 4. Metabolite signatures of GBM subtypes and correlations with clinical parameters. A, Number of metabolites that change in
the CSF of malignant glioma samples relative to the control patients as a function of p value cutoff using a two-tailed t test statistic. B, TCA
cycle signature associated with patients 3 and 10 and its relative contribution across patient samples. Signature score is defined as the
normalized sum of metabolite intensity of the citric acid cycle components (succinate, fumarate, alpha-ketoglutarate, malate, oxaloacetate,
isocitrate, and citrate). C, Tryptophan metabolism intermediates associated with recurrent disease (p value � 0.05). D, Example metabolites
cholesteryl-sulfate and myo-inositol that positively and negatively correlate ( R2 ) with tumor size as measured with MRI using Tgad and FLAIR
(x axis) and correlated with the integrated total ion current (TIC) peak areas (y axis) obtained from targeted LC-MS/MS measurements.
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give linear signals, with respect to the amount of abnormal
tissue. Therefore, despite the small sample size in our cohort,
the robust differences in certain metabolite levels suggests
that there is a great potential for metabolite biomarker dis-
covery in CSF and, when taken in aggregate, metabolite
signatures may also have the potential to be used as diag-
nostic biomarkers.

Because diffusion rates are much higher for small mole-
cules than for cells and proteins, the site of CSF collection,
lumbar versus ventricular, is likely less relevant than the
steady-state levels of other biological materials. Gerber et al.
investigated CSF biomarkers for bacterial meningitis and
found that lactate from either lumbar or ventricular source had
good linear correlation (r � 0.79, p � 0.001) as opposed to
leukocyte (r � 0.39, p � 0.02) or protein levels (r � 0.42, p �

0.006) (44). Each of our patient samples was taken from the
lumbar thecal sac except for subject 3 whose CSF was col-

lected from a ventricular drain. Therefore, our collection
method is unlikely to confound our analysis of the metabo-
lome in the CSF. However, a rigorous demonstration of
whether or not the absolute level of a given metabolite
would be different between lumbar and ventricular sites
would require the simultaneous collection and subsequent
metabolomic analysis of CSF from both sites and such a
collection is ethically unsound in routine clinical care. Fur-
thermore, the cluster dendrogram demonstrated that sub-
jects 3 and 10 are different from the rest of the malignant
cohort. Indeed, these two subjects have larger tumors and
later stage disease. However, it remains to be determined
whether the differences found in the metabolome from
these two subjects (or the differences in the recurrent ver-
sus newly-diagnosed patients) are a result of tumor pro-
gression or treatment effect on the brain. A future study to
lend more insight might exploit the prospective and periodic

TABLE II
Metabolite changes in malignant glioma vs. control patients

Metabolite ID Fold change (Malignant glioma vs. control) p value

biotin C00120 2.96 1.03E-06
glucono.d-lactone C00198 2.14 6.57E-06
dihydroorotate C00337 2.19 1.65E-05
orotate C00295 2.15 1.80E-05
2,3-dihydroxybenzoic acid C00196 2.13 2.96E-05
Indole.3-carboxylic acid HMDB03320 1.88 7.93E-05
Acetylcarnitine DL C02571 5.23 1.30E-04
Aminoadipic acid C00956 1.90 1.82E-04
proline C00148 2.83 1.23E-03
Phenyllactic acid C01479 1.56 1.30E-03
2.Hydroxy.2-methylbutanedioic acid C02612 0.22 1.59E-03
Phenylpropiolic acid HMDB00563 1.26 1.78E-03
dTMP C00364 1.53 4.93E-03
N6-Acetyl-l-lysine C02727 1.46 5.27E-03
oxaloacetate C00036 1.77 6.80E-03
Acetyllysine C02727 1.45 8.51E-03
shikimate C04236 3.69 8.61E-03
Atrolactic acid HMDB00475 1.66 1.26E-02
methionine C00073 2.27 1.27E-02
taurine C00245 1.50 1.29E-02
purine C00465 1.47 1.48E-02
N-acetyl-glutamine HMDB06029 1.43 1.80E-02
2-ketohaxanoic acid HMDB01864 3.16 1.93E-02
ribose-phosphate C00117 0.73 2.15E-02
myo-inositol C00137 0.65 2.27E-02
lysine C00047 1.54 2.86E-02
glucosamine C00329 1.38 3.02E-02
adenine C00147 0.49 3.23E-02
nicotinamide C00153 0.34 3.40E-02
thiamine C01081 7.99 3.51E-02
phenylalanine C00079 1.34 3.53E-02
S-methyl-5-thioadenosine C00170 1.50 4.07E-02
hypoxanthine C00262 0.72 4.14E-02
isocitrate C00311 0.72 4.36E-02
serine C00065 1.58 4.74E-02
7-methylguanosine HMDB01107 1.59 4.85E-02
glutamine C00064 1.36 4.85E-02
glucose.1-phosphate C00103 0.91 4.86E-02
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sampling of CSF while correlating the changes of metabolite
composition with the histology of recurrent tumor or treat-
ment effect.

There are a number of sources giving rise to the detected
metabolites in the CSF, including the tumor, stroma, and
inflammatory cells that have migrated into the tumor microen-
vironment. First, malignant gliomas have altered metabolism
directly induced by somatic mutations such as MYC amplifi-
cation, PTEN deletion or protein loss, EGFR amplification, and
IDH1/IDH2 mutations. The metabolic enzymes therefore cat-
alyze reactions that result in the accumulation of abnormal
metabolites in the CSF even though the tumor volume is at
most less than one-tenth of the total volume of the brain and
spinal cord. For example, IDH1 mutant cells can secrete
enough 2-hydroxyglutarate into the cell culture medium to
achieve a two molar concentration within 24 h (17, 45). In-
deed, we were able to detect high levels of 2-hydroxyglutarate
in patient 3 suggesting that this individual may have an IDH1-
mutated malignant glioma. We found that the CSF myo-ino-
sitol levels decrease, whereas cholesteryl sulfate level in-
creases linearly respect to tumor size as measured by Tgad
and FLAIR according to the Macdonald’s criteria. Myo-inositol
is a cerebral osmolyte found to be significantly lowered in
glioblastomas and anaplastic astrocytomas than in low-grade
gliomas and normal brain tissue as detected by magnetic
resonance spectroscopy (MRS) (46, 47). Consistent with the
previous MRS findings that decreasing myo-inositol level was
associated with increasing aggressiveness of the glioma phe-
notype, our data also showed that the tumor size in our cohort
negatively correlated with myo-inositol levels in the CSF. In
contrast, cholesteryl sulfate is an important component of the
cell membrane and it is distributed into the extracellular fluid
such as the plasma (48). The CSF of our cohort had choles-
teryl sulfate that positively correlated with the tumor size.
Furthermore, accumulation of cholesteryl sulfate was seen in
human bronchial epithelial cells undergoing squamous meta-
plasia (49) and this observation suggests that this metabolite
may arise from the oncogenic transformation of normal tissue.
Lastly, tryptophan metabolism is important for the activation
and suppression of inflammation (41, 42, 50, 51). In our cohort
with recurrent malignant gliomas, we found significantly ele-
vated indole, indoleacrylic acid, and anthranilic acid, which
are metabolites involved in the tryptophan metabolism, as
compared with newly diagnosed patients. In addition, histi-
dine, an essential amino acid and a precursor for the pro-
inflammatory histamine, was also found to be markedly ele-
vated in our patients with recurrent disease. These
inflammation-associated metabolites may be byproducts of
the innate immune system.

The accumulation of CSF metabolites from the TCA cycle
may indicate advanced disease. Patients 3 and 10 both had
recurrent malignant gliomas, with CSF samples taken 34 and
12 months from initial diagnosis, and their tumor sizes were
large as measured by gadolinium-enhanced T1 and FLAIR

images on head MRI. MRI is insufficient to delineate the entire
tumor due to the infiltrative nature of the malignant glioma
because tumor size is estimated based on the amount of
contrast leakage from tumor vasculature. Because there are
glioma cells outside of the area of active tumor angiogenesis,
gadolinium enhancement as shown on T1 MRI underesti-
mates the extent of the tumor. In contrast, FLAIR signal ab-
normality overestimates tumor size because FLAIR hyperin-
tensity not only represents infiltrative tumor but also cerebral
edema and radiation changes in the brain (52).

Together our study provides the first demonstration of me-
tabolite profiling in the CSF of malignant Glioma patients. Our
findings conclude that mass spectrometry-based metabolo-
mics methods offer a promising technology for the discovery
of biomarkers of malignant Glioma from sampling biological
fluid. Several biologically interpretable candidate biomarkers
from both individual metabolites as well as from collective
metabolite signatures were obtained. It is our hope that this
study extends the suitability of metabolomics technology and
motivates the metabolic analysis of CSF for further research
purposes in oncology such as a clinical trial with a larger
patient cohort.
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