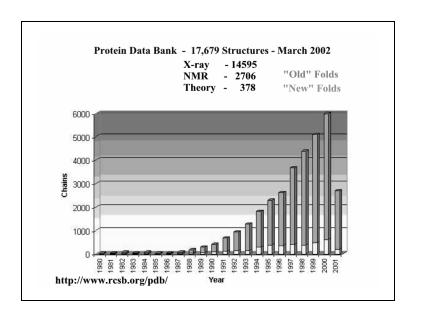
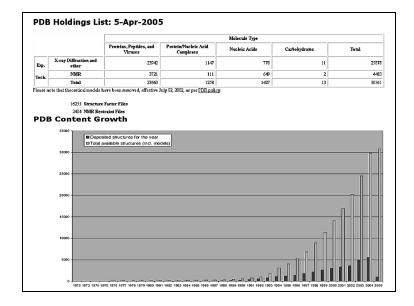
X-Ray Crystallography


"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

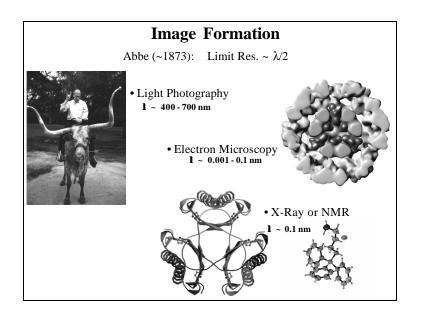

Topics:

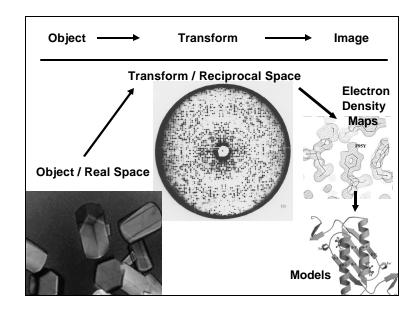
- 1. Protein Data Bank (PDB)
- 2. Image Formation

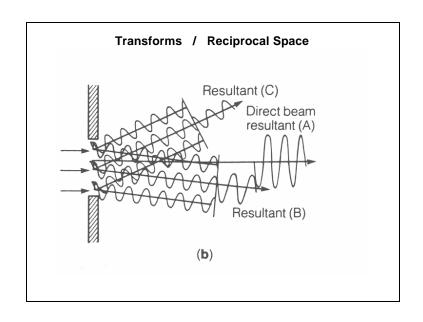
Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

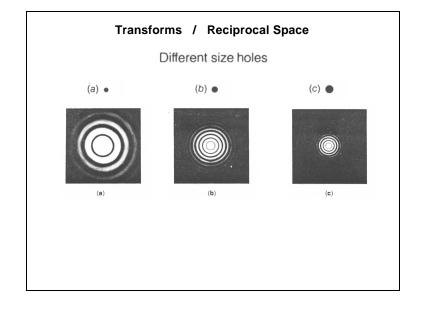
- 2. X-Ray Crystallography
 - a) Crystal Growth Materials / Methods
 - b) Crystal Lattices Lattice Constants / Space Groups / Asymmetric Unit
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d) Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

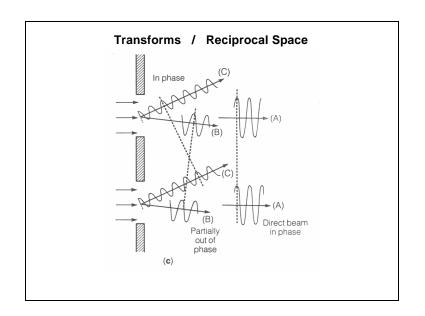
X-Ray Crystallography

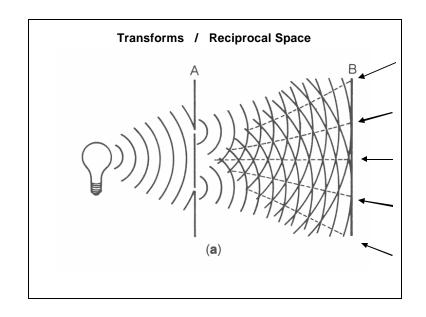

"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." - van Holde

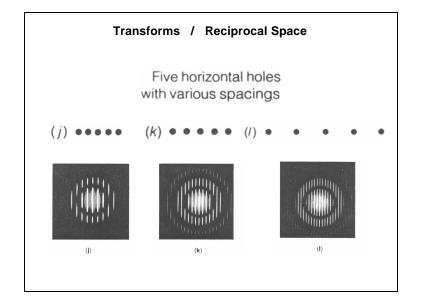

Topics

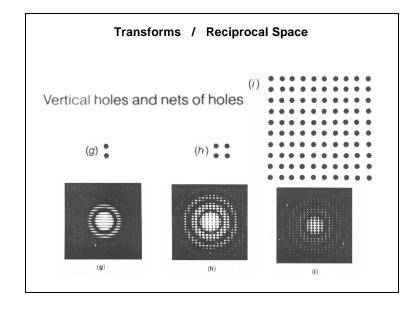

- 1. Protein Data Bank (PDB)
- 2. Image Formation

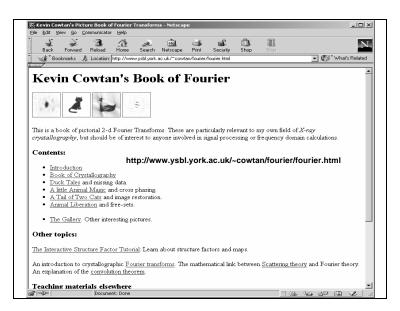

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

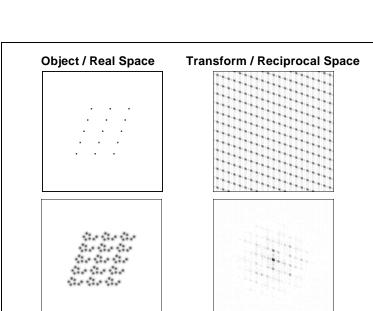

- 2. X-Ray Crystallography
 - a) Crystal Growth Materials / Methods
 - b) Crystal Lattices Lattice Constants / Space Groups / Asymmetric Unit
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d)Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

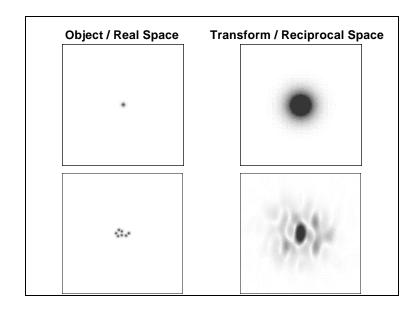


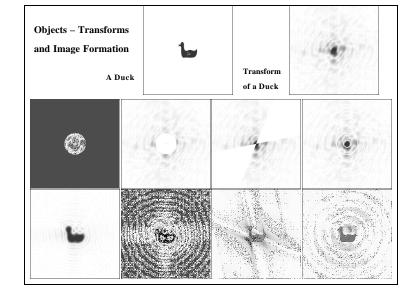


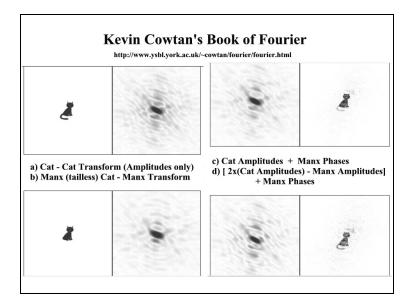


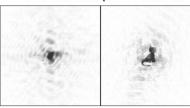


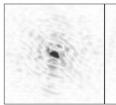









Kevin Cowtan's Book of Fourier http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html Here is our old friend; the Fourier Duck, and his Fourier transform: And here is a new friend; the Fourier Cat and fits Fourier transform:


Kevin Cowtan's Book of Fourier

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html

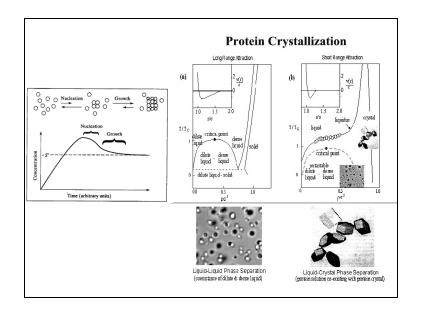
Duck Transform Amplitudes + Cat Phases

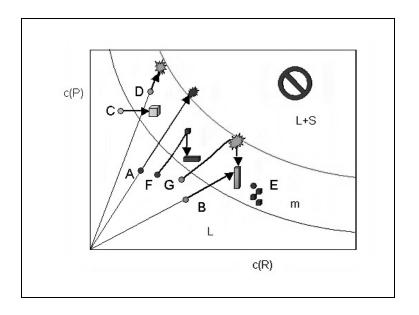
Cat Transform Amplitudes + Duck Phases

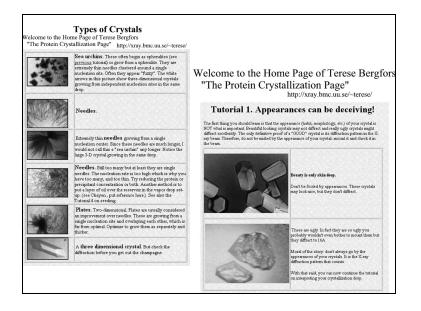
X-Ray Crystallography

"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde text

Topics:


1. Image Formation


Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / NMR


- 2. X-Ray Crystallography
 - a) Crystal Growth Materials / Methods
 - b) Crystal Lattices Lattice Constants / Space Groups
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d)Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

Variables that influence crystal growth

- 1. Nature of macromolecule Purity and concentration of macromolecule
- 2. Nature and concentration of precipitant
- 3. pH / Temperature / Pressure
- 4. Level of reducing agent or oxidant
- 5. Substrates, coenzymes, and ligands / Metal ions
- 6. Preparation and storage of macromolecule / Proteolysis and fragmentation
- 7. Age of macromolecule / Degree of denaturation
- 8. Vibration and sound
- 9. Volume of crystallization sample
- 10. Seeding
- 11. Amorphous precipitate
- 12. Buffers
- 13. Cleanliness
- 14. Organism or species from which the macromolecule was isolated
- 15. Gravity, gradients and convection

Common Compounds used in Crystallization

Ammonium or sodium sulfate

Sodium or ammonium citrate

Sodium or ammonium acetate

Magnesium sulfate

Cetyltrimethyl ammonium salts

Polyethylene glycol 400, 1000, 4000, 6000, 15,000 (now also 2,000, 8,000, etc.)

Methods for protein crystallization

Batch crystallization (simply dump reagents together)

Liquid-liquid diffusion in a capillary tube

Vapor diffusion-the most successful method (hanging drop, sitting drop), typically using a Limbro plate. Equilibration occurs between the liquid and vapor phase.

Dialysis

Hampton Crystal Screen Solutions

Note:

A mini-screen can be set up from the most successful conditions. Those are indicated in the column labeled Miniscreen.

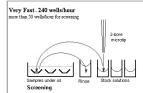
- a nice list of detergents commonly used in crystallization experiments
- pretty pictures
 CRYSTOOL efficient random screen made for you here on the WEB.

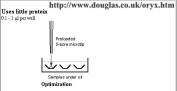
Tube #	SALT	BUFFER	Precipitant	Miniscreen	Tube #
1	0.02M Calcium Chloride	0.1M Na Acetate pH 4.6	30% w/v 2-methyl-2,4-pentanediol	Y	1
2	None	None	0.4M K,Na Tartrate tetrahydrate		2
3	None	None	0.4M Ammonium dihydrogen phosphate		3
4	None	0.1M Tris-HCI pH 8.5	2.0M Ammonium Sulfate	Y	4
5	0.2M tri-sodium citrate	0.1M Na HEPES pH 7.5	30% w/v 2-methyl-2,4-pentanediol		5
6	0.2M Magnesium chloride	0.1M Tris-HCI pH 8.5	30% w/v PEG 4000		6
7	None	0.1M Na Cacodylate pH 6.5	1.4M Sodium acetate trihydrate		7
8	0.2M tri-sodium citrate	0.1M Na Cacodylate pH 6.5	30% v/v 2-propanol		8
9	0.2M Ammonium acetate	0.1M Na Citrate pH 5.6	30% w/v PEG 4000	Y	9
10	0.2M Ammonium acetate	0.1M Na Acetate pH 4.6	30% w/v PEG 4000	Y	10
11	None	0.1M Na Citrate pH 5.6	1.0M Ammonium dihydrogen phosphate		11
12	0.2M Magnesium chloride	0.1M Na HEPES pH 7.5	30% vlv 2-propanol		12
13	0.2M tri-sodium citrate	0.1M Tris-HCI pH 8.5	30% v/v PEG 400		13
14	0.2M Calcium Chloride	0.1M Na HEPES pH 7.5	28% v/v PEG 400	Y (best)	14
15	0.2M Ammonium acetate	0.1M Na Cacodylate pH 6.5	30% w/v PEG 8000		15
16	None	0.1M Na HEPES pH 7.5	1.5M Lithium sulfate monohydrate	Y	16
17	0.2M Lithium sulfate	0.1M Tris-HCI pH 8.5	30% w/v PEG 4000	Y (2nd best)	17

Hanging Drop Method - Crystal Screening

The Experimental Setup

In order to obtain a crystal, the protein molecules must assemble into a periodic lattice. One starts with a solution of the protein with a fairly high concentration (2-30 mg/m) and adds resgents that reduce the solubility close to spontaneous percipitation. Dy slow further concentration, and under conditions suitable for the formation of a set must be considered by the contraction of the c systematic optimization of conditions Crystals should to be a few tenth of a mm in each direction to be useful for diffraction experiments




Right: The hanging drop technique. Center: 24 such hanging drop experiments are set up in a Linbro plate. Right: A kit of different screening solutions, a set-up Linbro plate, dialysis buttons and a micro batch plate behind a gonizoneter head.

The most common setup to grow protein crystals is by the hanging drop technique: A few microliters of protein solution are mixed with an about equal amount of reservoir solution combining the precipitants. A drop of this mature is put on a glass filld which covers the reservoir. As the protein-precipitant mature in the deop is less concentrated that the reservoir solution (newmore reversible and the protein solution with the reservoir solution obtain. It], water evaporates from the deop and the ness consciousness usus une reservour coussion (remmenter we more onle proteins coussion with the reservoir, and a reservoir a

Using Oryx 6 for Crystallization with Microbatch

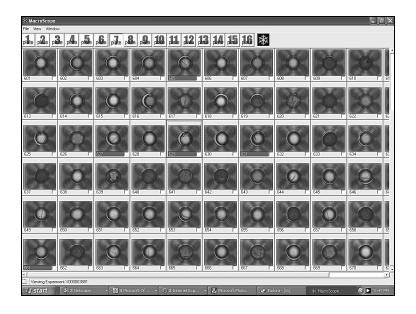
Microbatch operation is identical to IMPAX 1-5

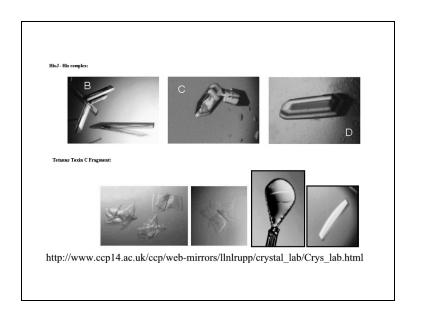
Microbatch screening finds more leads

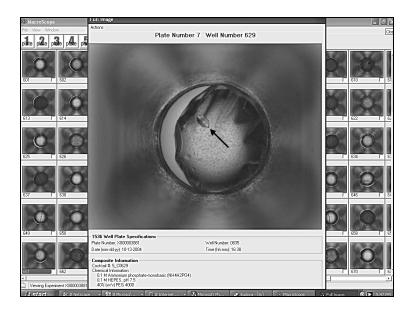
than VD in a given time

	Automated MB	Manual VD
roteins screened	6	6
creening solutions	48	48
Runs	3	1
olume per well	1 + 1 µ1	4+4 µ1
Total protein used	864 µ1	1152µl
Operator time	3 hr	24 hr
rystallization onditions found	43	41
Inique conditions	17	15

J. Crystal Growth. 168 (1996),pp 170-174. or: http://www.douglas.co.uk/nep2.htm

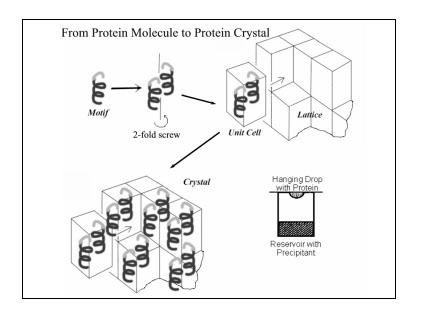


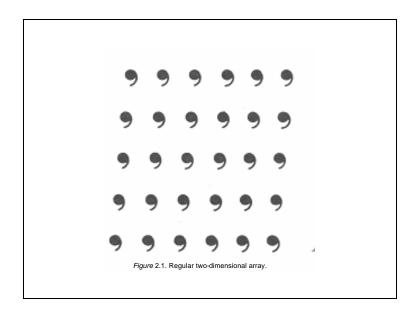

collected@om.VD crystals which were unstable. Countery of E. Conti. Acta Crystallographica. D 52 (1996), 4, pp 876-878

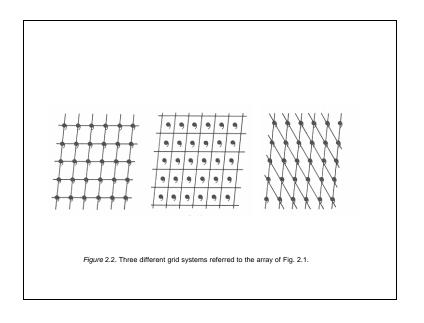

ttp://www.douglas.com/dwp3.htm

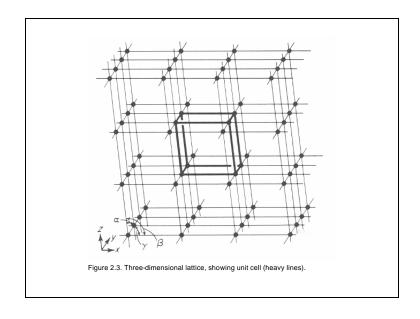
acterium Courtery of Y. Korbhin. Acta Crystallographica D 52 (1996) no 882-886

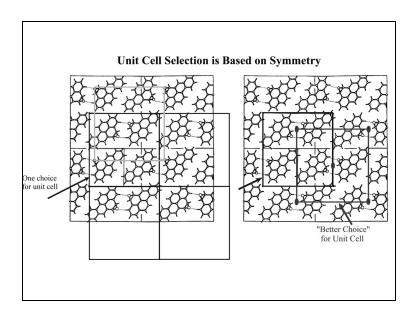
X-Ray Crystallography

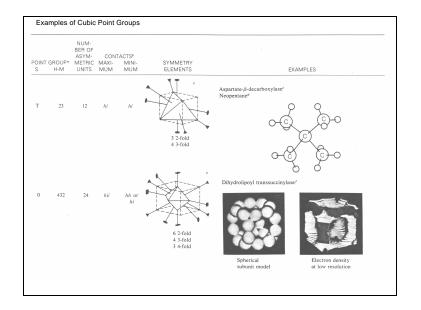

"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde text

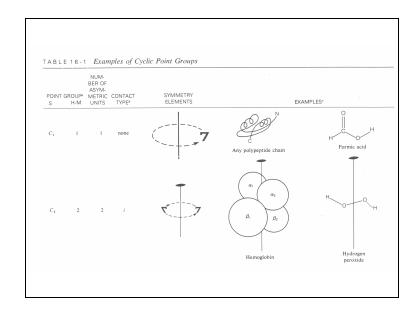

Topics:

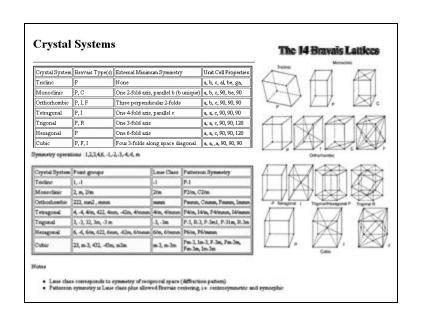

1. Image Formation

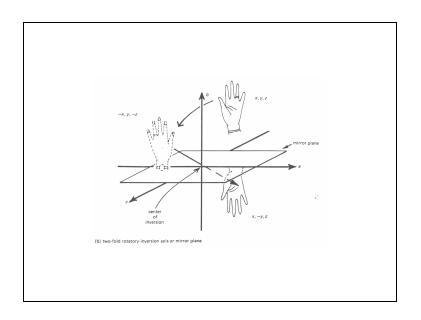

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / NMR

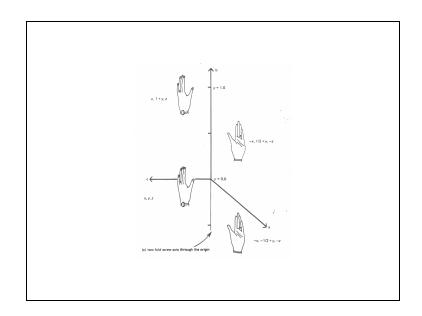

- 2. X-Ray Crystallography
 - a) Crystal Growth Materials / Methods
 - b) What is a Crystal: Lattices Lattice Constants / Space Groups / Asymmetric Unit
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d)Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

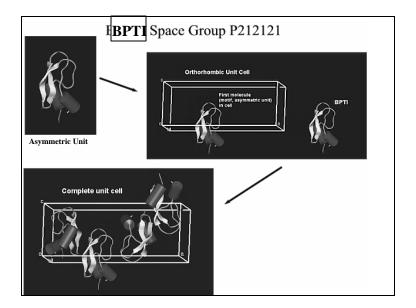








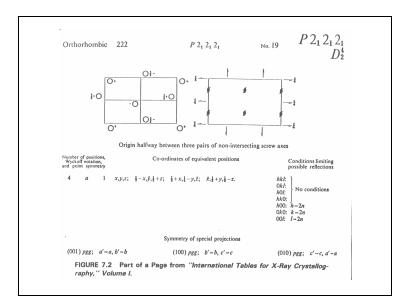




System	Point Group			Space	Group			Fractio
Triclinic	1 1	P1 P1						1/2
Monoclinic	2	P2	P2,	C2				1/4
	m	Pm	Pc	Cm	Cc			
	2/m	P2/m	$P2_1/m$	C2/m	P2/c	P21/c	C2/c	
Orthorhombic	222	P222 F222	P222 ₁ I222	P2,2,2 I2,2,2,	P2,2,2,	C2221	C222	1/8
	mm2	Pmm2	Pmc2.	Pcc2	Pma2	Pca2,	Pnc2	
	mm2	Pmn2 ₁	Pba2	Pna2	Pnn2	Cmm2	Cmc2.	
		Ccc2	Amm2	Abm2	Ama2	Aba2	Fmm2	
		Fdd2	Imm2	Iba2	Ima2	71042	1 1/11/112	
	mmm	Pmmm	Pnnn	Pccm	Phan	Pmma	Pnna	
		Pmna	Pcca	Pham	Pccn	Pbcm	Pnnm	
		Pmmn	Pbcn	Pbca	Pnma	Cmcm	Cmca	
		Cmmm	Cccm	Cmma	Ccca	Fmmm	Fddd	
		Immm	Ibam	Ibca	Imma			
Tetragonal	4 4	P4 P4	P4, 14	P42	P43	14	I4,	1/8
	4 4/m	P4 P4/m	P4./m	P4/n	P42/n	I4/m	I4,/a	
	422	P422	P42,2	P4,22	P4,2,2	P4,22	P4,2,2	1/16
		P4,22	P4,2,2	I422	14,22			
	4 mm	P4mm	P4bm	P42cm	P42nm	P4cc	P4nc	
	7.	P42mc	P42bc	I4mm	I4cm	14, md	I4,cd	
	42 m	P42m P4b2	P42c P4n2	P42, m I4m2	P42,c I4c2	P4m2 142m	P4c2 I42d	
	4/mmm	P4/mmm P4/nmm	P4/mcc P4/ncc	P4/nbm P4./mmc	P4/nnc P4 ₂ /mcm	P4/mbm P4-/nbc	P4/mnc P4-/nnm	
		P4/nmm P4 ₂ /mbc	P4/ncc P4 ₂ /mnm	P42/mmc P42/nmc	P42/mcm P42/ncm	I4/mmm	I4/mcm	
		I41/amd	I4,/acd	r+2/nmc	r 42/ncm	14/mmm	14/ mcm	
Trigonal/rhombohedral	3	P3	P3,	P3 ₂	R3			1/6
	3	P3	R3					
	32	P312	P321	P3,12	P3,21	P3212	P3221	1/12
	3 m	R32 P3m1	P31m	P3c1	P31c	R3 m	R3c	
	3 <i>m</i>	P31m	P31c	P3m1	P3c1	R3m	R3c	
Hexagonal	6	P6	P6,	P6.	P6-	P6.	P6 ₁	1/12
LICARGOIM	6	P6		1 03	, 02	1 04	103	1/12
	6/m	P6/m	P6 ₃ /m					
	622	P622	P6,22	P6,22	P6222	P6,22	P6322	1/24
	6 <i>mm</i>	P6mm	P6cc	P6,cm	P6 ₃ mc			
	6 <i>m</i> 2	P6m2	P6c2	P62m	P62c			
	6/ <i>mmm</i>	P6/mmm	P6/mcc	P6 ₃ /mcm	P6 ₃ /mmc			
Cubic	23 m3	P23 Pm3	F23 Pn3	I23 Fm3	P2,3 Fd3	I2,3 Im3	Pa3	1/24
	ms	Ia3	rns	rms	rus	Im3	Pas	
	432	P432	P4232	F432	F4,32	I432	P4,32	1/48
		P4,32	14,32					.,
	43 m	P43m	F43m	I43m	P43n	F43c	143d	
	m3 m	Pm3m	Pn3n	Pm3n	Pn3m	Fm3m	Fm3c	
		Fd3m	Fd3c	Im3m	Ia3d			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CRYSTAL SYSTEM	LAT- TICE	MINIMUM SYMMETRY OF UNIT CELL	UNIT CELL EDGES AND ANGLES*	DIFFRAC- TION PAT- TERN SYM- METRY*	SPACE GROUPS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Triclinic	P	None		ī	P1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Monoclinic			$\alpha = \gamma = 90^{\circ}$	2/m	
Trigonal/rhombobedral P	Orthorhombic	C I	3 mutually perpendicular 2-fold axes		mmm	C222, C222, [I222, I2,2,2,]
Trigonal/rhombohedral R' 3-fold axis parallel to c $a - b - c$ 3 $R_{2,1}^{(1)}(P_{4}, 2, 2, P_{4}, 2, 2), P_{4}, P_{4}, P_{4}^{(2)}(P_{4}, 2, 2, P_{4}, 2, 2), P_{4}^{(2)}(P_{4}, 2, $	Tetragonal	P	4-fold axis parallel to c			P4, (P4 ₁ , P4 ₃), P4 ₂ I4, I4 ₁
Trigonal/rhombohedral P_{p}^{A} 3-fold axis parallel to c $c = b = c$ c $a = \beta = \gamma \neq 90^{\circ}$ $P_{1}(3, P_{1})_{2}$ $P_{2}(3, P_{2})_{3}($					4/mmm	P42 ₁ 2, (P4 ₁ 2 ₁ 2, P4 ₃ 2 ₁ 2), P4 ₂ 2 ₁ 2
Hexagonal P 6-fold axis parallel to c $a = b = c$ $a = b = c$ $(P321, P3121, P312$	Trigonal/rhombohedral		3-fold axis parallel to c		3	R3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Pd		$\alpha = \beta = \gamma \neq 90^{\circ}$	$\overline{3}m$	R32 [P321, P312]
Cubic P 3-fold axes along cube diagonals $a=b=c$ m_1 $p_{1,2}$ $p_{2,2}$ $p_{3,2}$ $p_{4,2}$	Hexagonal	P	6-fold axis parallel to e	$\alpha = \beta = 90^{\circ}$		$P6_3$, $(P6_2, P6_4)$
Cubic P 3-fold axes along cube diagonals $a = b = c$ $m3$ $P23$ $P3$ $P3$ $P3$ $P3$ $P3$ $P3$ $P3$ P				$y = 120^{\circ}$	6/mmm	
/ (73,723) F #3 #23,7432 #3 #43,7432,7432 #43,7432	Cubic	P	3-fold axes along cube diagonals		m3	P23
m3m $P432, (P4,32, P4,32)$ $P422$ $P432$ $P432$ $P432$				$\alpha = \beta = \gamma = 90^{\circ}$		[123, 12,3]
		•			m3m	P432, (P4 ₁ 32, P4 ₃ 32) P4 ₁ 22

X-Ray Crystallography


"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde text

Topics:

1. Image Formation

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / NMR

- 2. X-Ray Crystallography
 - a) Crystal Growth Materials / Methods
 - b) Crystal Lattices Lattice Constants / Space Groups
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d)Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

