

11. What tools are available to help me understand protein structures?

1

column. The component waves, each with proper phase and amplitude, are on the left. The curves on the right show the successive superposition of the five waves on the left. (From Waser, 1968.)

Solving the phase problem by "Molecular Replacement".

If an approximate model of the protein structure is known in advance, approximate phases can be guessed, and the unknown parts of the structure can be calculated in an iterative procedure.

No heavy atom derivative required.

BUT – need starting model and orientation (rotation and translation)

For example, molecular replacement can be used to determine the structure of an complex with inhibitor bound to an enzyme active site, if the structure of the enzyme itself is already known. Also, MR is often used to solve the structures of closely related proteins in a superfamily.

Table 1: Data Col and Native Data S			ing Statio	tics for th	e MAD		
	MAD I	MAD 2	MAD 3	MAD 4	native		
λ(A) resolution (A) meanicity	0.9788	2	0.9562 20 50	0.9809	0.9560 1.80 0.65		
no. of neflections observed > 1a	432376	446744	431524	336135	779600		
no. of unique reflections > lar	35817	37596	36020	36242	67992		
R _{mip} *(%) completeness (%)	6.0 91.8	6.4 95.8	5.1 92.1 41.6	3.7 92.1 50.0	6.0 (67.2) 99.3 (95.6)		
(Fa)	30.3	34.3	44.70		34.5 (2.6)		
$\frac{\langle I d \rangle}{* R_{stops} - \sum I_{cho} }$			40,0	24.9		r 2: Final Refinement Statistics for Ale	ant int 1.9 A Re
	$-I_{eg} \Sigma$	Y _{eq} l.		28.7	Table	R factor ^a (%) R _{low} (%) (for 1747 reflections)	un at 1.9 A Re 29.4 25.4
	$-I_{eg} \Sigma$			2007		R factor ⁴ (%) R _{bec} (%) (for 1747 reflections) average B factor (A ²) ⁶ music chain	20.4 25.4 25.5
* R _{ange} = <u>Y</u> H _{ab} The 1.9 Å Crystal Sea	- Ingl S	Varyl or: 90, c. 1 nite Recent	ette inner	houleastartie	Table	R factor ⁴ (%) R _{box} (%) (for 1747 reflections) average R factor (Å ² f ⁴	20.4 25.4 25.5 31.5 21.9
*R _{maps} = <u>Y</u> H _{ab} The 1.9 Å Crystal Sea	- Leg() Burley stars of Alar a Conserve g (a) are the	Margh con 300, 40 (nite Racent of Entryway teach Cont	atto saos and three Af indo the Au secut Patched	hoobacteria thus Side ¹¹	Table un 8 Aubertailum	R factor ⁴ (%) R _{bo} (%) (for 1747 selfsctions) average B factor (Å? ⁴ wate choin side choin PGP waters mus devations	20.4 25.4 25.5 31.5 21.9 32.4
 R_{mapp} = Σβl_{sin} The 1.9 Å Crystal Sea Contain 	- Lang I D Burley charg of Alar to Conserve to Sol Jory Th Sol Lange Con- traction to Conserve to Cons	Margh ann 1986, at 1 nine Racens of Entryway Institut Oracle at of Status 1 The Oracle	atto yang ang Brann M Jaho Ba Au Kang TM Kang Dan T Research State	incohasteria (Dep Sile ¹) (1. Incold, 1 in (20. Mil. David (Device 1 of the	Table of Information and Information and Chings and Chings and Chings and Chings	R factor ⁴ (%) R _{bit} (%) (for 1747 reflections) average R factor (A ²) ⁶ must choin side choin PLP waters	20.4 25.4 25.5 31.5 21.9

Analyze – structure (Ramachandran Plot) and biochemistry
Publish in leading biochemical or structural biology journal
Contribute results (coordinates, etc.) to PDB

Data Mining
Visualization programs (Cn3D / RasMol / SwissPDBV / etc)
SCOP – Structural Classification of Proteins
CATH – Classification / Arch / Topology

SC	OP Structural	Classifica	ation of Protei	ns
Bruchural Classifi	cation of Proteins			
00			ion Statistic	5
	17406 PDB Entries (1 Sept	temb er 2002). 4432	27 Domains: 22 Literature 5	deferences
	17406 PDB Entries (1 Sep (excluding	temb er 2002). 4433 gructeic anids an	17 Domaine, 28 Literature 5 d theoretical models)	
	17406 PDB Entries (1 Sep (excluding Class	amb er 2002). 4432 gnucleic erids en Number of folds	17 Domains: 28 Literature F d theoretical models) [Number of superfamilies	Number of families
	17406 PDB Entries (1 Sup (excluding Class All olpha proteins	emb er 2002). 4432 gnucleic anids an Number of falds 1.51	17 Domains 28 Literature 5 d theoretical models) Phother of superfamilies 237	Number of families
	17406 PDB Entries (1 Sep (contacting Class All ophia proteins All beta proteins	amb er 2002). 4432 gnucleic erids en Number of folds	17 Domains: 28 Literature F d theoretical models) [Number of superfamilies	Number of families
	17406 PDE Entries (1 Sept (excluding Class All opting proteins All byting proteins All pring proteins All pring and boto proteins (a/b)	amb er 2002). 4432 mutteit anids an Number of falds 1.51 1.11	17 Dománs 28 Literature 5 d theoretical models) Number of superfamilies 257 213	Number of families 409 362
	174bi PDB Entries (1 Supplementation of the second	ember 2002). 4432 mucher ef falds 1.51 1.11 1.17	27 Domains 28 Literature F d the continued models) 20 20 20 213 190	Number of families 409 362 467
	17406 PDE Entries (1 Sept (excluding Class All opting proteins All byting proteins All pring proteins All pring and boto proteins (a/b)	nenker 2002). 4433 grunder of folds 131 111 117 212 39	Poinsing 22 Literature F theoretical models) Poinsber of superfacelities 277 213 190 303	Number of families 409 362 467 488
	174bi PDB Entries (1 Supplementation of the sectoring (excluding Class Class All optin proteins All optin proteins All optin proteins Alphin and bots proteins (a/b) Alphin and bots proteins (a/b) Multi-domain proteins	nenker 2002). 4433 grunder of folds 131 111 117 212 39	Promine 22 Literature F d theoretical models) Provider of superfaulties 277 213 190 308 39	Number of families 409 362 467 488 31

CATH - Protein Structure Classification

CATH is a novel hierarchical classification of protein domain structures, which clusters proteins at four major levels: Class (C), Architecture (A), Topology (T), and Homologous (H) Superfamily

Class, derived from secondary structure content, is assigned for more than 90% of protein structures automatically. Architecture, which describes the gross orientation of secondary structures, independent of connectivities, is currently assigned manually. The topology level clusters structures according to their topological connections and numbers of secondary structures. The homologous superfamilies cluster proteins withhighly similar structures and functions. The assignments of structures to toplogy families and homologous superfamilies are made by sequence and structure comparisons.

