

Variables that influence crystal growth

- 1. Nature of macromolecule Purity and concentration of macromolecule
- 2. Nature and concentration of precipitant
- 3. pH / Temperature / Pressure
- 4. Level of reducing agent or oxidant
- 5. Substrates, coenzymes, and ligands / Metal ions
- 6. Preparation and storage of macromolecule / Proteolysis and fragmentation
- 7. Age of macromolecule / Degree of denaturation
- 8. Vibration and sound
- 9. Volume of crystallization sample
- 10. Seeding
- 11. Amorphous precipitate
- 12. Buffers
- 13. Cleanliness
- 14. Organism or species from which the macromolecule was isolated
- 15. Gravity, gradients and convection

Common Compounds used in Crystallization

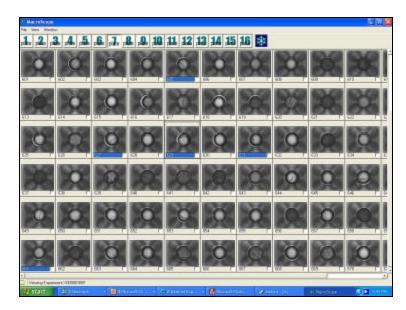
Ammonium or sodium sulfate Sodium or ammonium citrate Sodium or ammonium acetate Magnesium sulfate Cetyltrimethyl ammonium salts Polyethylene glycol 400, 1000, 4000, 6000, 15,000 (now also 2,000, 8,000, etc.)

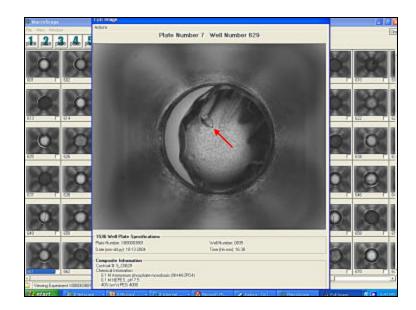
Methods for protein crystallization

Batch crystallization (simply dump reagents together) Liquid-liquid diffusion in a capillary tube Vapor diffusion-the most successful method (hanging drop, sitting drop), typically using a Limbro plate. Equilibration occurs between the liquid and vapor phase. Dialysis

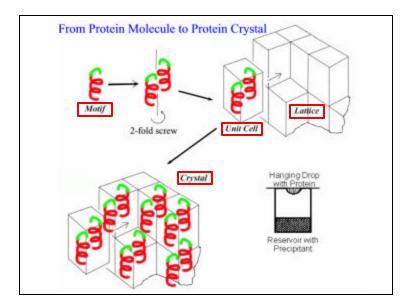
Hampton Crystal Screen Solutions

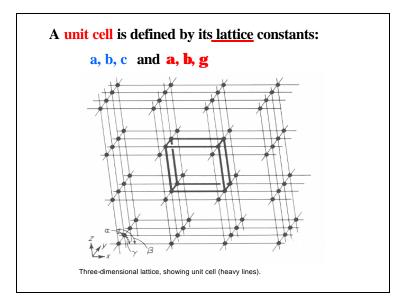

Note :

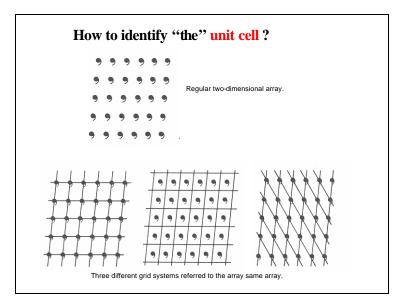

A mini-screen can be ast up from the most successful conditions. These are indicated in the volume labeled Miniscreen.

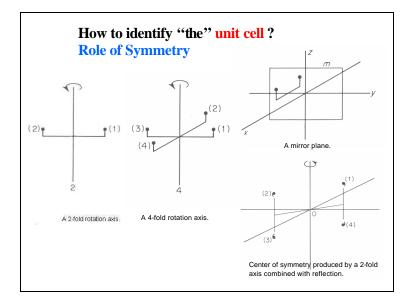

- · argeniat of felengeria composity used in crystalization repensents
- hoster midnend
 CEVETCC1, efficient random errors, made for yea here on the WED
- CELEDICAL SERVICE ALBORIZATION REPORT OF ANY OF THE ASSA OF THE ASSA

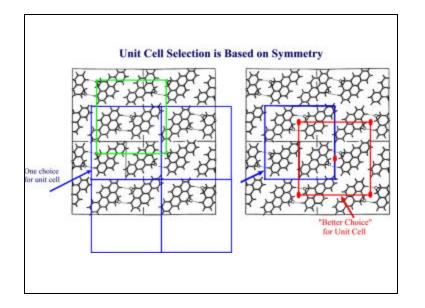
Tube #	SALT	D.FTER	Procipitant	Mintacrinin	Tabe #
1	0.02M Celcours Chiloride	0.1M Na Acetala pH 4.5	30% w/v 2-methyl-2,4-pentanediol	Y	1
2	Nano	Poine	E.480 K,Na Tarbate tobatydrato		1
	Navo	Picea	 AN Architekure Biltydrogen phosphate 		3
4	Nana	0.1M Tris-HCI pH 8.5	2.34 Ammonium Sullate	Y.	
5	0.2M bi-sodure clows	D.1M Na HEPES pH 7.5	30% w/v 2-methyl-2,4-pentanedtol		5
8.	0.2M Magnesium chioride	0.1M Tris-HCIpH 8.5	30% w/v PEB 4000		8
7	Nano	0.1M Na Cacedviate pH 8.5	1.4M Sodium ocelate tritystolo		1
8	0.2M throodure utsate	10.1M Na Cace eviate pH 8.5	30% viv 3 propanel		8
.9	0.1M Ammenium Acetate	20.1M Na Citrate pH 5.8	30% wh PE8 4000	Y	9
18	0.2M Annessium acatate	0.1M Na Azetate pH 4.6	30% w/v PE0 4000	Y.	10
11	Nane	0.1M Na Citrate pH 5.8	3. BM Arcenonium diitydrogen briosofialla		11
12	20.2M Magnesium chloride:	20.1M Na HEFE8 pH 7.5	30% vitr 2-propendi		12
13	0.2M thisodium citrate	0.1M Tris-HCIpH 8.5	20% m PEO 488	0.000000000	13
74	0.3M Calcium Chieride	I0.1M Na HEPEB pH 7.5	20% viv PEO 488	Yotests	14
15	0.2M Annaniam acetate	10.1tm Na Cacedytate pH 8.5	00% w/v PE0 8000	1 - 2 - 2 - 2	15
18	hane	30.1M Na HEPES pH 7.5	3 SM Littli am outfate monohydrate	Y .	18
.17	0.2M Lithium auftate	D. TH TRE-HCIPH 8.5	30% w/v PE-9 4000	V Cind Best)	17.

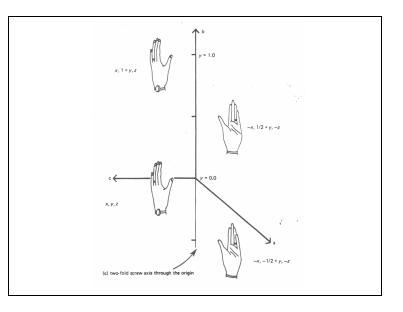


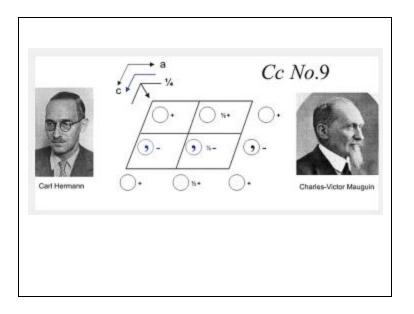


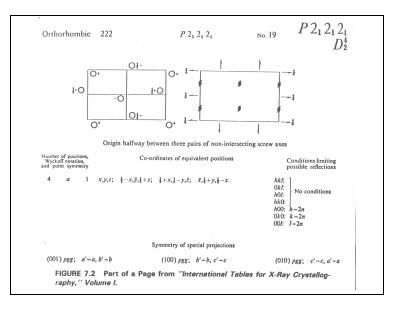


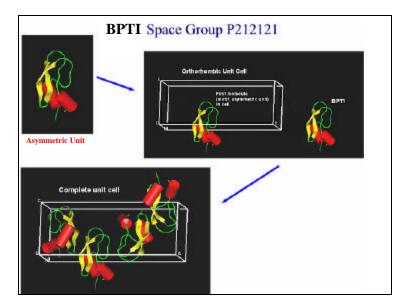



X-Ray Crystallography
"If a picture is worth a thousand words, then a macromolecular
structure is priceless to a physical biochemist." – van Holde
Topics:
1. Protein Data Bank (PDB)
Data mining and Protein Structure Analysis Tools
2. Image Formation
Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)
3. X-Ray Crystallography (after NMR)
a) Crystal Growth – Materials / Methods
c) X-ray Sources – Sealed Tube / Rotation Anode / Synchrotron
d)Theory of Diffraction - Bragg's Law / Reciprocal Space
e) Data Collection – Methods / Detectors / Structure Factors
f) Structure Solution – Phase Problem: MIR / MR / MAD
h) Refinements and Models
i) Analysis and presentation of results

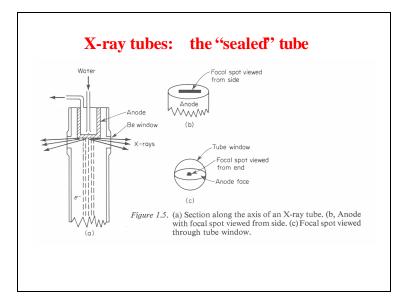


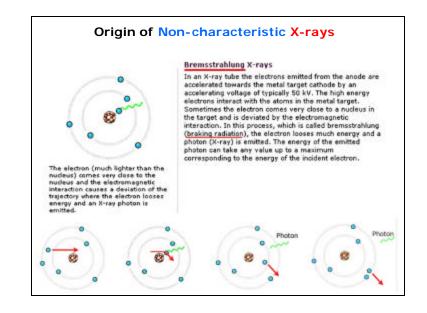

The Fourteen Bravais Lattices

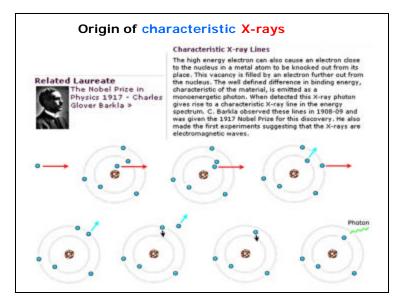

There are fourteen distinct space groups that a <u>Bravais</u> lattice can have. Thus, from the point of view of symmetry, there are fourteen different kinds of <u>Bravais</u> lattices. <u>Auguste Bravais</u> (1811-1863) was the first to count the categories correctly.

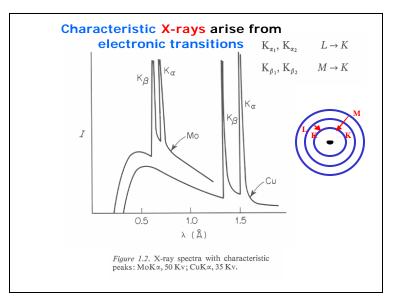


Cepstal System	Browsie Type(c) External Minances Symmetry		r	Unit Cell Property	
Teitlinit	P	None			a la a al be ga
Mesodini	P,C	One 3-Sold can, penallel b (b u		unique)	a. b. c. 91, be, 90
Orthorhorabic	P.L.F	Three perpendicular 2-folds			a, b, c, 90, 90, 90
Tetragread	P,1	One 4-fold unit,	puradel e	-	4, 4, 1, 90, 90, 90
Ingonal	P, R.	One 3-Sold age		1	a, a, c, 90, 90, 128
Henegonal	P	One 6-5old use	55		a, a, c, 90, 90, 128
Tubic	P, F, I	Fotar 3-felde ale	ang space di	lancina.	4.4.4.90,90,90
	iom : 1,2,3,46,-1,-	22222			
lyud System	Point groups	22222	Laus Clean	_	näyreday
Departed Styname Trik Berg	Prén granes L.J.		J	P.)	näyradıy
ingunal System Vicies Conocieis	Point groups Ll 2. es. 20e			P.) P264, C	en Symmittery Mei
DynalOyatea Diclea Monocleia Dishorbombic	Point groups LL 2. m, 24m 222, mm2 , status		։ Հեր ման	P.) P36c.C Poron.C	er Symanitzy Ma Daniel, Pasan, Jac
Dystel Oysten Diclina Monoclinia Dishorborabic Tetergood	Point groups 11 2. m, 20m 232, mm2 , 400 m 4. d, clin, c22, des		.l 2m see din, dinas	P.J P364, C Porter, C Polis, 14	n Symentry Ma Danist, Passes, Inte As, Pélvana, Johnson, Johnson
Digensi System Dicies Monoclinis Dishorbombic Dishorbombic Dishorbombic Disponsi	Point groups 11 2. n. 200 232, nm2, 400 4. 4. 66, 622, 60 1. 1, 72, 34, 34	er, Qu. Unan	.] 2011 1915 1915 1915 1915 1915 1915 1915 1	P.) P36c.C Porect P36c.N P36c.N	n Symentry Ma Datat, Passes, Inte As, Pilvana, Johnson, Johnson, Pilvana, P
Drystel Oystem Dricless Microsofiels Distroctionable Detergrand Drigonal	Point groups 11 2. m, 20m 232, mm2 , 400 m 4. d, clin, c22, des	er, Qu. Unan	.] 2011 1915 1915 1915 1915 1915 1915 1915 1	P.) P36, C Paran, ⁽ P36, N P36, N P3, R.3 P(6, P)	n Symentry Ma Datat, Passes, Inte As, Pilvana, Johnson, Johnson, Pilvana, P






System	Point Group			Space	Group			Fraction
Triclinic	$\frac{1}{1}$	P1 P1						1/2
Monoclinic	2	P2	P2,	C2				1/4
	m	Pm	Pc	Cm	Cc			
	2/m	P2/m	$P2_1/m$	C2/m	P2/c	P21/c	C2/c	
Orthorhombic	222	P222	P2221	P2,2,2	P2,2,2,	C2221	C222	1/8
		F222	1222	12,2,2,				
	mm2	Pmm2	Pmc2,	Pcc2	Pma2	Pca2,	Pnc2	
		Pmn2 ₁ Ccc2	Pba2 Amm2	Pna2, Abm2	Pnn2 Ama2	Cmm2 Aba2	Cmc2, Fmm2	
		Fdd 2	Imm2	Iba2	Ima2	Abd2	rmm2	
	mmm	Pmmm	Pnnn	Pccm	Pban	Pmma	Pnna	
		Pmna	Pcca	Pbam	Pccn	Pbcm	Pnnm	
		Pmmn	Pbcn	Pbca	Pnma	Cmcm	Cmca	
		Cmmm	Cccm	Cmma	Ccca	Fmmm	Fddd	
		Immm	Ibam	Ibca	Imma			
Tetragonal	4 4	P4	P4,	P42	P4,	I4	I4,	1/8
		$P\overline{4}$	14					
	4/m	P4/m	$P4_2/m$	P4/n	$P4_2/n$	I4/m	I4,/a	
	422	P422	P42,2	P4,22	P41212	P4222	P42212	1/16
		P4,22	P43212	I422	14,22			
	4 <i>mm</i>	P4mm	P4bm	P4 ₂ cm	$P4_2nm$	P4cc	P4nc	
	42 <i>m</i>	P42mc P42m	P42bc P42c	I4mm	I4cm	14, md	14,cd	
	42m	P42m P4b2	P42c P4n2	P42,m I4m2	P42,c 14c2	P4m2 142m	P4c2 142d	
	4/ <i>mmm</i>	P4/mmm	P4/mcc	P4/nbm	P4/nnc	P4/mbm	P4/mnc	
		P4/nmm P4 ₂ /mbc	P4/ncc P4 ₂ /mnm	P4 ₂ /mmc P4 ₂ /nmc	P4 ₂ /mcm P4 ₂ /ncm	P4 ₂ /nbc I4/mmm	P4 ₂ /nnm I4/mcm	
		I4,/amd	14,/acd	P 42/ MMC	F 42/ hcm	14/ <i>mmm</i>	14) mcm	
Frigonal/rhombohedral	3	P3	P3.	P32	R3			1/6
	3	P3	R3					
	32	P312	P321	P3,12	P3,21	P3,12	P3,21	1/12
		R32						
	3 m	P3m1	P31m	P3c1	P31c	R3m	R3c	
	3 <i>m</i>	P31m	P31c	P3m1	P3c1	R3m	R3c	
Hexagonal	6	P6	P61	P6,	P62	P64	P63	1/12
	õ	Põ						
	6/ <i>m</i>	P6/m	P63/m					
	622	P622	P6,22	P6,22	P6222	P6422	P6322	1/24
	6 <i>mm</i>	P6mm	P6cc	P6,cm	$P6_3mc$			
	6 <i>m</i> 2	P6m2	P6c2	P62m	P62c			
	6/ <i>mmm</i>	P6/mmm	P6/mcc	P63/mcm	P63/mmc			
Cubic	23	P23	F23	123	P2,3	12,3		1/24
	m3	Pm3	Pn3	Fm3	Fd3	Im3	Pa3	
		Ia3						
	432	P432	P4232	F432	F4132	I432	P4332	1/48
	7.0	P4,32	14,32	-7-	-7-	-7-		
	43 <i>m</i>	P43m Pm3m	F43m Pn3n	143m Pm3n	Pā3n Pn3m	F43c Fm3m	143d Fm3c	
	m3m	Pm3m Fd3m	Pn3n Fd3c	Pm3n Im3m	Pn3m Ia3d	rmam	Pm3c	
		rasm	rasc	imom	1434			


CRYSTAL SYSTEM	LAT- TICE	MINIMUM SYMMETRY OF UNIT CELL	UNIT CELL EDGES AND ANGLES®	DIFFRAC- TION PAT- TERN SYM- METRY [®]	SPACE GROUPS
Triclinic	Р	None	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	ī	<i>P</i> 1
Monoclinic	Р С	2-fold axis parallel to b	$a \neq p \neq \gamma$ $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}$ $\beta \neq 90^{\circ}$	2/m	P2, P2, C2
Orthorhombic	P C I F	3 mutually perpendicular 2-fold axes	$\begin{array}{l} a \ \neq b \ \neq c \\ \alpha \ = \ \beta \ = \ \gamma \ = \ 90^{\circ} \end{array}$	mmm	P222, P2 ₁ 2 ₁ 2 ₁ , P222 ₁ , P2 ₁ 2 ₁ 2 C222, C222 ₁ [<i>I</i> 222, <i>I</i> 2 ₁ 2 ₁ 2 ₁] F222
Tetragonal	P I	4-fold axis parallel to c	$\begin{array}{l} a \ = \ b \ \neq \ c \\ \alpha \ = \ \beta \ = \ \gamma \ = \ 90^{\circ} \end{array}$	4/m 4/mmm	P4, (P4 ₁ , P4 ₃), P4 ₂ I4, I4 ₁ P422, (P4 ₁ 22, P4 ₃ 22), P4 ₂ 22 P42 ₁ 2, (P4 ₁ 22, P4 ₃ 2 ₁ 2), P4 ₂ 2 ₁ 2 I422, I4.22
Trigonal/rhombohedral	$\frac{R^{d}}{P^{d}}$	3-fold axis parallel to c	$\begin{array}{l} a \ = \ b \ = \ c \\ \alpha \ = \ \beta \ = \ \gamma \ \neq \ 90^\circ \end{array}$	3 3 <i>m</i>	$ \begin{array}{l} R_{22} \\ R_{3} \\ R_{3} \\ R_{3} \\ R_{32} \\ [P321, P312] \\ [(P3_{1}21, P3_{2}21), (P3_{1}12, P3_{2}12)] \end{array} $
Hexagonal	Р	6-fold axis parallel to c	$a = b \neq c$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	6/ <i>m</i> 6/ <i>mmm</i>	$\begin{array}{l} P6, (P6_1, P6_3) \\ P6_3, (P6_2, P6_4) \\ P622, (P6_122, P6_522) \\ P6_522, (P6_522, P6_522) \end{array}$
Cubic	P I F	3-fold axes along cube diagonals	$\begin{array}{l} a = b = c \\ \alpha = \beta = \gamma = 90^{\circ} \end{array}$	<i>m</i> 3	P23 P2 ₁ 3 [123, 12 ₁ 3] F23
	-			m3m	P432, (P4 ₁ 32, P4 ₃ 32) P4 ₂ 22 I432, I4 ₁ 32 F432, F4 ₁ 32

X-Ray Crystallography "If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde
Topics:
1. Protein Data Bank (PDB)
Data mining and Protein Structure Analysis Tools
2. Image Formation
Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)
3. X-Ray Crystallography (after NMR)
a) Crystal Growth – Materials / Methods
b) Crystal Lattices - Lattice Constants / Space Groups / Asymmetric Unit
d)Theory of Diffraction – Bragg's Law / Reciprocal Space
e) Data Collection – Methods / Detectors / Structure Factors
f) Structure Solution – Phase Problem: MIR / MR / MAD
h) Refinements and Models
i) Analysis and presentation of results

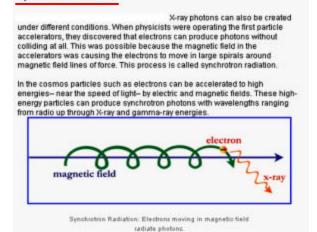
Characteristic X-rays have defined

Table 1.1. Target Materials and Associated Constants

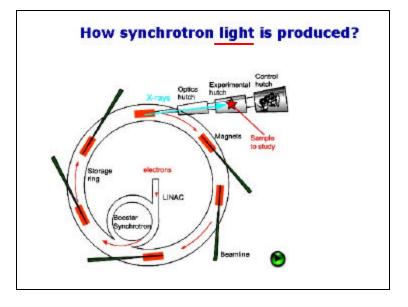
	Cr	Fe	Cu	Мо
Z	24	26	29	42
$\alpha_1, Å$	2.2896	1.9360	1.5405	0.70926
α ₂ , Å	2.2935	1.9399	1.5443	0.71354
ā,* Å	2.2909	1.9373	1.5418	0.71069
$\beta_1, Å$	2.0848	1.7565	1.3922	0.63225
β , filt.	V, 0.4 mil†	Mn, 0.4 mil	Ni, 0.6 mil	Nb, 3 mils
α, filt.	Ti	Cr	Со	Y
Resolution, Å	1.15	0.95	0.75	0.35
Critical potential, kV	5.99	7.11	8.98	20.0
Operating conditions, kV:	30-40	35-45	35-45	50-55
half- or full-wave- rectified, mA	10	10	20	20
constant potential, mA	7	7	14	14

* \vec{a} is the intensity-weighted average of a_1 and a_2 and is the figure usually used for the wavelength when the two lines are not resolved.

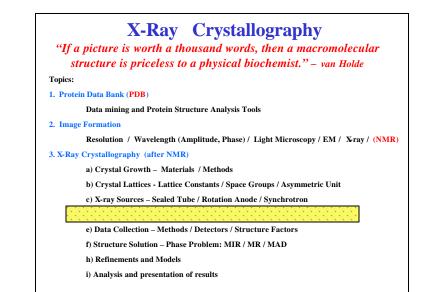
1 mil = 0.001 inch = 0.025 mm.

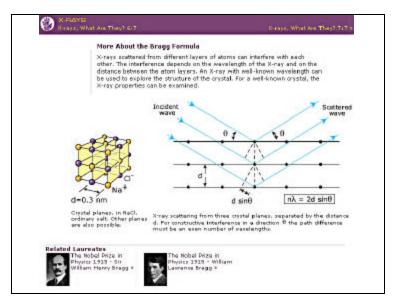


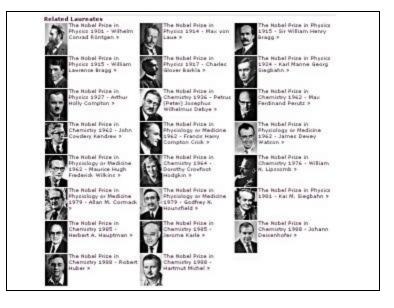
Now with the new ULTEA mode yes can get 610W on a Linea focus?



Another Source of "X-rays"


Synchrotron Radiation




"X-ray" Sources: Beyond X-ray tubes Brilliance of the X-ray beams The brilliners of a light source is defined as the number of photons emitted per second, per unit source and, per unit (photons /s./ mm²/mrad²/0.1% BW) space angle and for a bandwidth of 11000 of the photon energy Diffraction limit o The Comparison between wateras senaress of X-rays shows large differences in their initiance. X-ray robest ESEF Idar Witholm Control Rinzpes discovered X-rays in 1875 whilst working with cathode-ray tubes. Using the principle of fast electrons hitting a metallic target, a first substantial gain in bulkance was not obtained until the introduction of outstang encode 44040146 (~196E) SSSF (1996) Synchrotron Radiation Parillelies: The progets of high energy physics, with the construction of powerful particle accelerators gave bath to what we now call Rest generation synchrotron severes (-1070). Using the deflection of high energy electrons by a magnetic field for the generality: production of X onto provid so promining that a runnible of dedicated Second generation posicies were built (~1707) 10.000 Relptog on the combination of needle this electron beens and losestion Devices, Third generation synchroleun sources (-190) are new scaling synchrotron X-ray beam that are a trilion $(X^{(2)})$ tases more builded than these produced by X-ray OFFICIE tuber. Free Electron X-ray Lasers: Coupling electron and X-my beams together, the Prov Electron X-my Larent currently on the drawing boards could be the used generation of Kony sources. While they promise to achieve an increase in peak bulkance by another factor of a ballion. the first prototypes may be operational around the year 2010. 1900 1920 1940 1960 1960 2000 Year

