Fall '10
Hackert
CH370
HW- 3 (due 11/23)

Name \qquad
UTeID \qquad

Mass Spec (2/2-pts)
a) ESI mass spec:

Est. mass of protein: \qquad

b) Consider a time-of-flight experiment. A 64 kDa protein with a single charge arrives in $32 \mu \mathrm{~s}$ in a time-of-flight experiment. What is the estimated mass of a protein that arrives in $16 \mu \mathrm{~s}$ and is known by other means to have twice the charge as the 64 kDa protein?

Note: kinetic energy KE $=(Z e) E s ; \quad(\mathrm{m} / Z)=2 \mathrm{e} E s(\mathrm{t} / \mathrm{D})^{2}$, or $\mathrm{m}=\left[2 \mathrm{e} E s(1 / \mathrm{D})^{2}\right] Z \mathrm{t}^{2}$.

Ligand Binding (2/1/1)

a) A dialysis equilibrium experiment is carried out using a radiolabelled ligand with the following results being obtained: At equilibrium the total concentrations of protein and ligand inside the dialysis tubing are 3.6 microM and 3.6 microM respectively; and the concentration of ligand in buffer outside dialysis tubing is 0.6 microM. Assuming a single binding site, the value of Kd calculated from these results is
\qquad -.
b) All of the following can be obtained from an isothermal equilibrium experiment except (select all that
apply): A) $\Delta \mathrm{H}$
B) Keq
C) kon
D) $\Delta \mathrm{S}$
E) $\Delta \mathrm{G}$
c) All of the following can be obtained from a surface plasmon resonance experiment except (select all that
apply): A) $\Delta \mathrm{H}$
B) Keq
C) kon
D) $\Delta \mathrm{S}$
E) $\Delta \mathrm{G}$

X-ray (2/2/2)
a) Consider the following illustration of a unit cell where the "a" axis is vertical and the "b" axis horizontal. Identify the Miller indices associated with the Bragg planes shown in the blanks provided.
(2)

\qquad
b) Consider the following two illustrations of packed birds. In Figure A consider the three types of birds (different colors or shades of gray) to be different. In Figure B consider all the birds to be identical. Indicate by drawing solid lines on each figure the "best" choice for the smallest unit cell in each system, and then answer the questions below.
(2)
A)

Number of birds / unit cell:
Number of birds / asym unit
B)

c) Given that a "reciprocal lattice" shows three, orthogonal reciprocal lattice vectors belonging to a tetragonal space group with the following diffraction data measurements, calculate the lattice constants and volume of this tetragonal unit cell. (Assume $\lambda=0.154 \mathrm{~nm}$).
(2)

$\underline{\boldsymbol{k} \boldsymbol{l}}$						$\underline{\boldsymbol{2} \boldsymbol{\theta}}$
10 10 0 34.22° 0 0 22 46.87°						

$\mathbf{a}=$ \qquad
b $=$ \qquad
$\mathrm{c}=$ \qquad
V = \qquad

EM (1/1)
Which EM method is most similar to light microscopy?
Which "imaging" method we discussed used the sense of "touch"?
NMR (2/2)
a) A sample containing $1,000,000$ identical nuclei $(\mathrm{I}=1)$ is placed in a magnetic field of 10 Tesla at a temperature of $20^{\circ} \mathrm{C}$. The gyromagnetic ratio for this nucleus is $3.333 \times 10^{7} \mathrm{rad} / \mathrm{sec}-\mathrm{T}$. Which of the numbers below would be the best guess as to approximate the number of nuclei in the upper-most energy state?
A) 500,050
B) 0
C) 333,000
D) $1,000,000$
E) 249,950
F) 500,000
G) 166,000
H) 499,950
b) NOE: Consider the NMR spectrum of asparagine shown below in part (a). The sample is then irradiated with RF waves at 4.5 ppm . In part (b) sketch the resulting NMR spectrum expected using the same scale as in part (a).

(b)

