Review Summary - CH370 - Exam 1

Amino Acids and Peptides

Know all 20 common amino acids - name / 3-letter abbrev. / 1-letter abbrev.
Know approximate pKa 's of titratable amino acids ($2 / 4 / 6 / 8 / 10 / 12$)
Charge properties of amino acids and peptides / pI
Nature of the peptide bond (phi / psi angles)

Protein Structure

Definitions of primary, secondary, tertiary and quaternary structures Common secondary structures / Phi, Psi (ϕ / ψ) torsion angles
How to read a Ramachandran Plot
Common terms used to describe protein structure - motifs / domains - examples

Review of Nucleic Acids: Structures / Folding

Know N Bases; Primary \& Secondary structure: double helix by Watson \& Crick -1953
Nucleotide pairings: Watson-Crick
Conformations of nucleosides - syn / anti; Sugar pucker: endo or exo
Stabilization (destabilization) Hydrogen Bonding / Electrostatics / Stacking
Denatured DNA: Heat denaturation of DNA is called "melting," Tm / hypochromism.
DNA Sequencing - Maxam-Gilbert vs. Sanger (basics; how to read a sequencing gel)

Bioinformatics and Software

Major web resource sites - NCBI / EMBL / ExPASy / PDB
BLAST - principles, uses and definitions of key terms,
Substitution matrices
Sequence alignments / Scoring

Protein Purification

Produce / Extract / Purify
Produce: rich tissue / expression system
Extract: cell lysis - grinding / sonication / French Press / detergent
Purify: Take advantages of differences in: Solubility / Charge / Size / Specificity - various forms of chromatography

Analysis: Follow purification using an assay for "activity" and SDS gels

Spectroscopy

Interaction of Light with Matter (induce oscillating dipoles in matter)
a) Scattered - $\quad\left(\sim 10^{-16} \mathrm{sec}\right)$ b) Absorption $-\left(\sim 10^{-15} \mathrm{sec}\right)$

Absorption Spectrum - "fingerprint"
Beer-Lambert Law: Absorbance (A); Intensity ($\mathrm{I}, \mathrm{I}_{\mathrm{o}}$); Transmittance ($\mathrm{T}=\mathrm{I} / \mathrm{I}_{\mathrm{o}}$)
$\mathrm{A}=\log \left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}\right)=\log (1 / \mathrm{T})$
Extinction Coefficient $-\mathrm{E}(1 \%), \varepsilon_{\mathrm{M}}=$ Molar extinction coeff.
$\mathrm{A}=\mathrm{O} . \mathrm{D} .=\varepsilon \bullet \mathrm{c} \bullet \boldsymbol{l} \quad$ also $\quad\left[\left[\mathrm{E}^{1 \%}\right] \bullet \mathrm{MW}=10 \bullet\left[\varepsilon_{\mathrm{M}}\right]\right]$
Fluorescence / Phosphorescence
Fluorescence ($\sim 10^{-4} \mathrm{sec}$ to $10^{-9} \mathrm{sec}$) / Phosphorescence ($>10^{-3} \mathrm{sec}$)
FRET (Fluor. Res. Energy Transfer) Eff. $=1 /\left[1+(\mathrm{R} / \mathrm{Ro})^{6}\right]-$ needs "spectral overlap"

