Review Summary – CH370 - Exam 2

Nucleic Acids - Microarrays

Stabilization (destabilization) Hydrogen Bonding / Electrostatics / Stacking
Denatured DNA: Heat denaturation of DNA is called "melting," Tm / hypochromism.
DNA microarrays – general principles of gene-expression / roles of mRNA, cDNA
Profiling with fluorescent labels (red / green / yellow)

Radioactivity and Counting

Radioactive decay processes (α / β + / β - / E.C.); Radioactivity rays (γ -rays) Half life: $A = Ao \exp(-kt)$ where k = ln2/half-life Measurement of Radioactivity: Geiger Counter / Film / PhosphorImagers / LSC Liquid Scintillation Counting: Excited solvent / 1^o "fluor" / 2^o "fluor" / PM

Electrophoresis – transport of charged particle in an electric field.

Theory: $F_{tot} = qE - fv = ma = m(dv/dt) = 0$; v = (qE/f) $f = 6\pi\eta R$ for spheres; $\eta = Viscosity \sim 0.01g/(cm-sec)$ Ferguson Plots: electrophoretic mobility reflects both charge and size/shape Methods: slab / tube / seq. gels / (native; denatured) / Disc. Gel / PAGE / PFGE / IEF / CE SDS-PAGE (subunit MW) / buffer system / stains; IEF gels / 2D-PAGE

Centrifugation Theory: $F_{tot} = m_{eff}\omega^2 r - fv = m\omega^2 r(1 - v'\rho) - fv = ma = m(dv/dt) = 0$; (v' is "v bar")

Preparative Methods: RCF / Rotors / Density Gradient: Zonal vs. Isopycnic Methods Analytical Methods / Modern Analytical Ultracentrifuge Optics: Schlieren ($\alpha = aK(dc/dx)$; Interference ($\Delta J = (aK\Delta c)/\lambda$); Abspt. optics ($A \sim c$) Sedimentation Velocity: $s = v/\omega^2 r = (m(1 - v'\rho)/f)$; \rightarrow plot (ln r) vs. t \rightarrow slope = $s\omega^2$ Sed, Vel. plus Diffusion: $D = (kT/f) = (RT/N^o f)$; \rightarrow $s = MD(1 - v'\rho)/RT$ Sedimentation Equil.: $lnc_r - lnc_{rm} = [M\omega^2(1 - v'\rho)/(2RT)](r^2 - r_m^2) \rightarrow plot ln c vs. r^2$

Light Scattering: "Static" vs. "Dynamic"

Wavelength >> particle size

Rayleigh (Static) Scattering − i/I₀ = $N[8π^4α^2/r^2λ^4](1 + cos^2θ)$ for unpolarized radiation. Raleigh Ratio: R_θ = (i_θ / I_θ)(r² / (1 + cos²θ)) = $[2π^2 n_o^2 (dn/dC)^2/λ^4 N_o^2]$ *CM* or **R**_θ = *KCM* KC/ R_θ = 1/(M*P(θ)) + 2 A₂C; Mean Square Radius (**Rg**) 10 nm to 150 nm **Polydispersity** (*Mw/Mn*); If normalized, LS = RI for monomer but LS = 2*RI for dimer **Dynamic Light Scattering** −Hydrodynamic (Stokes) Radius (**R**_h) 1.5 to 1000 nm Experimental (Use of LS and RI); **LS** = **K**_{LS}**CM**(**dn/dC**)²: **RI** = **K**_{RI}**C**(**dn/dC**) or **LS/RI** = **M**[(**K**_{LS}/**K**_{RI})(**dn/dC**)] or **M** = **K**'(LS)/(RI) **Wavelength** << **particle size**; SAXS → shape information from interference / folding, binding

CD

Terms: CD / plane polarized light vs. circularly polarized light, etc.

Special type of spectroscopy - meas. the difference in left and right handed absorbance A(l)- A(r).

The instrument: measurements in far UV 180-240 nm (proteins); 180-300 nm (nucleic acids).

CD spectra can distinguish types of secondary structure (helix, sheet, r.coil / B-DNA, A-DNA) etc.

Applications: Folding / Secondary Structure / Denaturation / Thermal Stability / Binding