Centrifugation - Goalsfor thisunit:

1. Understand essential theoretical concepts of movement of
a particle under a centrifugal force. -
P 9 F.+ Fy+ Fp=0

2. Know differences between "preparative" and "analytical" types
of centrifugation. = Relative Centrifugal Force

3. Analytical Centrifugation
Instrument
Optic systems - generalprinciples / how to interpret them
Schlieren / Interference / Absorption optics

Common Applications (transport vs. equilibriumexperiments)
Sedimentation Coefficient -"s" vs. "S"
Diffusion Coefficient D =RT/N
Frictional Coefficient / frictional coeff. ratio = i
Sedimentation Equilibrium

Sedimentation of Particles in a Gravitational Field
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Table 1. Approximate Values of Partial Specific Volumes

for Common Biological Macromolecules

Substance P

iml./g)
Proteins 0.73 (0.70-0.75)
Polysaccharides 0.6l {0,59-0.65)
RNA 0.53 (0,47-0.55)
DNA (.58 (0.55-0.59)

Data from Beckman review article by Greg Ralston.

Preparative Centrifugation
1. Principles of Centrifugation /theory and key equations

A M 5 A
F, = mw-r= N o

where w = angular velocity (radians/ sec)

r = radius of particle from axis of rotation
note: w(Ll/sec) = rpmx (2prad / rev) x (1 min/ 60 sec)
mw2r _ (2p rpm/60)2 x r
ma 980 cm/ sec?
=1.119 x 10° (rpm)?r

Fc
RCF (Rel. Centrifugal Force) = E =

for r=9.0cm
rpm 1000 5000 10,000 20,000 40,000
RCF 100 2500 10,000 40,000 160,000




Use of Centrifugation in Biochemistry
M-vp) _ _u

Nf w’r
1. Preparative Centrifugation

-rotors
- density gradient methods

sucrose gradients/ isopyncic methods (CsCl gradients)

2. Analytical Ultracentrifugation
- instrument and optic systems
- sedimentation velocity experiments
sed. coefficient (s) (S=10"3)
- sedimentation equilibrium exp.
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Isepyncic Contrifugation
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Analytical Ultracentrifuge:

The sorts of questions for which answers are
sought

(1) Is the sample homogeneous? Is it pure?

(2) If there is a single component, what is the molecular weight?

(3) If more than one type present, can the molecular weight distribution of
the sample be obtained?

(4) Can an estimate be obtained of the size and shape of the particles? Are

the molecules compact and spherical (globular) or long and thin (rod-
like)?

(5) Can the macromolecules be distinguished on the basis of density?

(6) Can interactions between solute molecules be detected? Aggregation
between molecules changes molecular weight, changes in molecular
weight as a function of the concentrations of the components can
illuminate the type of reaction (e.g. reversible or nonreversible?), the
stoichiometry, and the strength of binding.

(7) Can changes in conformation or shape of the particles be measured?

Molecular Weight Determination

Light scattering / Centrifugation / Osmometry/
Mass Spec

Electrophoresis and chromatographic methods are popular for rapid
estimation of molecular weights of proteins and nucleic acids. However, such
methods, though rapid and sensitive, have no rigorous theoretical base;
they are empirical techniques that require calibration and assumptions
that may be invalid.

The analytical ultracentrifuge enables the direct
measurement of molecular weights of solutes in the native
state and as they exist in solution, without calibrations or
assumptions concerning shape. The method is applicable to
molecules with molecular weights ranging from several hundreds
(sucrose) up to many millions (virus particles).

Sedimentation equilibrium methods require only small sample
sizes (20-120 pL) and low concentrations (0.01-1 g/L).

Conformational Changes

X-ray diffraction and NMR techniques are currently the
only techniques available that are capable of providing
structural details at atomic resolution.

Nevertheless, the overall size and shape of a
macromolecule or complex in solution can be obtained
through measurement of the rate of movement of the
particles through the solution. Sedimentation velocity
experiments in the analytical ultracentrifuge provide
sedimentation and diffusion coefficients that contain
information concerning the size and shape of
macromolecules and the interactions between them.
Sedimentation coefficients are particularly useful for
monitoring changes in conformation in proteins.




Use of Centrifugation in Biochemistry
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1. Preparative Centrifugation
-rotors
- density gradient methods
sucrose gradients / isopyncic methods (CsCl gradients)

2. Analytical Ultracentrifugation
- instrument and optic systems
- sedimentation velocity experiments
sed. coefficient (s) (S=101%)
- sedimentation equilibrium exp.
molecular weight RT

- diffusion constants / M= Nf

Sedimentation of Particles in a Gravitational Field
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Centrifugation: Terms and Units

Force: mass x acceleration (F=ma = mwr?
(gcm /sec 2)

Energy: force x distance Joule = Kg m2/ sec 2

erg = gcm Jsec?

Partial specific volume v (cm 3/g)
Viscosity: h (~0.01 g /(cm-sec))

Frictional Coefficient: f=6p N R, (~ 108 g/sec)

Sedimentation Coefficient: s (sec) [ 1S=1013s]

Diffusion Constant: D= % (cm?is)

Sedimentation:

Farces at Equilibrium:

Eb B . -
Fd L drag) _
““F: Fr (centrifugal farca)l = o'rm

Direction of
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XL-A Analytical Ultracentrifuge
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How can we measure s in the Ulracentrifuge?

Mi{l-vp)

Express the valocity in tarms of a derivative

Intagranta:

The XLA provides both @A f and the radial positions, r
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Flow in the Ultracentrifuge Cell:

Sedimentation:

Diffusion:

The rabio of &/D is proportional to the Molecular weight
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Diffusion vs. Sedimentation at low speeds

Diffusion Sedimentation

=

Concentration

Top Bottom

Radius

Sedimentation Equilibrium

At Equilibrium, the total flow is zero, and diffusion
and sedimentation exactly balance out
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