Fall '11	CH370	Name
Hackert	HW- 1 (20 pts) – Due Sept. 20 (8:30 am)	UT eID
(Complete this grad	ded homework independently, place all answers on this page, show work belo	ow, on back, or on attached pages. No credit for late work)
1. Terminolog	gy:	
(4) a) Which	amino acid's side chain would have an expected pK	Xa around 8?
b) Which t	four atoms define the "phi" angle when specifying t	the conformation of a polypeptide
backbone	?	
c) Humans	s possess three forms of the protein antizyme – AZ-	1, AZ-2 and AZ-3. These proteins have
homologo	ous sequences and are more accurately referred to as	s
d) Where	would one expect to find DNA with a syn conformation	ation for the N base orientation?
2. Estimate th	he pI of the oligopeptide: $D - E - C - E - M - D - D$	E - R (pI ~)

- (2)
- 3. Consider a "gel filtration" column that is 100 cm in length and 2.50 cm in diameter. It is packed with spherical beads that are on average 0.22 mm in diameter with a density of 1.31 g/cm³. Assume that V_o is 36% of V_{tot} . The column is calibrated with trypsin inhibitor (~21.5 kD) and β -galactosidase (~116 kD) which gave Ve /Vo values of 2.67 and 1.42, respectively. Estimate the elution volume of a protein of **molecular mass 75.6 kD**. (Ve ~ _____ mL)

(3)

4. Given the sizes and pI's of the following proteins, predict the order in which these proteins would be eluted off a CMC (carboxymethyl cellulose) column run at pH 7.0 and eluted with a salt gradient from 0.10 M NaCl to 2.0 M NaCl.

	A)	Serum albumin	B) Hemoglobin	C) Chymotrypsin
	Size (kD):	68.5	64.5	23
	pI:	4.9	6.8	9.5
(2)	Order	off column: (1^{st})	off)	(last off)

5. The absorbance of UV light at 280 nm by proteins is mostly due to the aromatic amino acids tyrosine and tryptophan. Lactate DH is a tetramer with each subunit having 332 a.a. (36,507 Da) and containing 6 residues of tryptophan ($\epsilon = 5.6 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), 5 residues of tyrosine ($\epsilon = 1.4 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$) and 8 residues of phenylalanine ($\epsilon = 0.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$).

a) Estimate the molar extinction coefficient for this protein at 280 nm. (ε = _____)
(3)

b) Estimate the $\mathbf{E}^{1\%}$ for this protein at 280 nm. ($\mathbf{E}^{1\%} =$ ____) (2)

c) Calculate the absorbance and percent transmission for a solution of this protein at a concentration of 0.60 mg/mL from a cell with a path length of 0.50 cm measured at 280 nm.

- (2) (A = ___; %T = ___)
- 6. Consider a FRET experiment where the measured efficiency of energy transfer between two chromophores is 20.0%. If $R_o = 40.0$ Å for these two chromophores, estimate the separation of the two chromophores. ($\mathbf{R} =$ ____)

(2)