Light Scattering

STATIC Light Scattering

Also known as Rayleigh or Classical Light Scattering

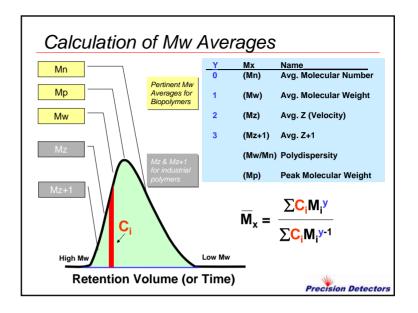
Measures avg. intensity of scattered light for

Absolute Molecular Weight

Light Scattering (DLS)

Also known as Quasi-elastic Light Scattering (QUELS) or Photon Correlation Spectroscopy (PCS)

Measures microsecond fluctuations of single photons

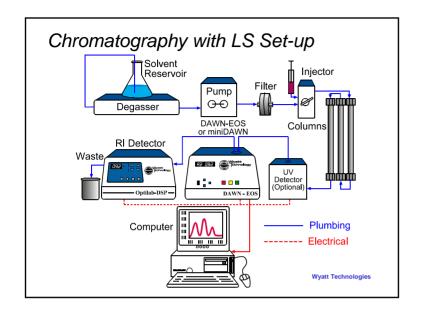

Hydrodynamic Radius (Size)

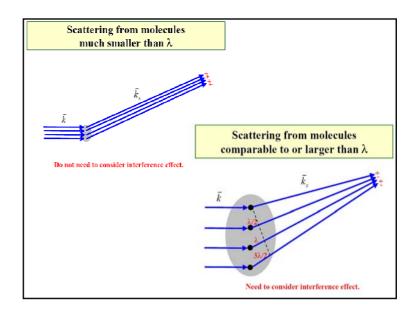
M.L.Hackert (with figures from Precesion Detectors and Wyatt Tech.)

What Do We Mean By ABSOLUTE?

- There are 4 Absolute Methods of Measuring MW
 - 1) Membrane Osmometry (Number Average MW)
- 2) Light Scattering (Weight Average MW)
- 3) Sedimentation Equilibrium (Ultracentrifugation) (z-average MW)
- 4) Mass spectroscopy
- NO Reference to standards of mass
- NO assumptions of molecular model/conformation
- ALL parameters measured directly from 1st principles
- Refractive indices
- geometries of cell and detector
- wavelength
- concentrations
- detector response
- temperature
- dn/dc

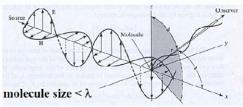
Wyatt Technologies




Abstract

Precision Detectors

Recent advances in genomics and proteomics have produced a proliferation of new proteins requiring characterization. Mass spectrometry is ideally suited for identification and primary structural purposes but is not suited for determining conformational structures in solution. As these molecules are expressed in cell culture, purified and then formulated. rigorous production processes must be carefully evaluated to minimize impact on the protein structure and its long-term shelf life. Obtaining a conformational stability profile of protein or antibodies can help weed out bad drug candidates from good ones as environmental factors can change their tertiary and quaternary structure. Environmental factors include pH ionic strength, temperature, and excipient composition.


HPLC is used in flow injection mode with a detector array composed of laser light scattering (static and dynamic modes) and a concentration source detector (RI or UV). This configuration determines the average molecular weight and average hydrodynamic radius with run times as short as 1 minute. Alternatively, a SEC guard column can be used isolate analyte from excipients (eliminating blank runs) with run times under 3 minutes.

EM wave scattered by a molecule

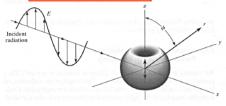
Dipole induced in the molecule at the origin

$$\bar{p} = \alpha \bar{E} = \alpha \bar{E}_0 e^{i\omega t}$$
 E_0 : incident field

Electromagnetic wave emitted by the oscillating dipole

$$E = \frac{4\pi^2 \alpha E_0 \sin \phi}{\lambda^2 r} e^{i(\omega t - \vec{k}_x \cdot \vec{x})}$$

EM wave scattered by a molecule

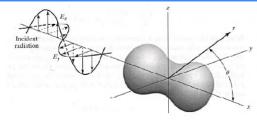

Electromagnetic wave emitted by the oscillating dipole

$$E = \frac{4\pi^2 \alpha E_0 \sin \phi}{\lambda^2 r} e^{i(\omega t - \bar{k}_s \cdot \bar{x})}$$

Scattering intensity to the incident intensity

$$\frac{I}{I_0} = \frac{16\pi^4 \alpha^2 \sin^2 \phi}{\lambda^4 r^2}$$

for polarized incident light of intensity I_0


EM wave scattered by a molecule

Scattering intensity to the incident intensity

$$\frac{I}{I_0} = \frac{8\pi^4 \alpha^2 (1 + \cos^2 \theta)}{\lambda^4 r^2}$$

for unpolarized incident light

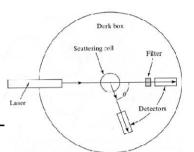
 $I \propto 1/r^2$; $I \propto 1/\lambda^4$; I depends on scattering angle

Scattering from molecules much smaller than λ

molecule size
$$<< \lambda$$

molecule size
$$\ll \lambda$$

$$\frac{I(\theta)}{I_0} = \frac{2\pi^2 n_0^2}{A\lambda^4 r^2} \left(\frac{dn}{dC}\right)^2 CM(1 + \cos^2 \theta)$$


Light scattering can be used to determine the molecular weight.

$$R_{\theta} = \frac{I(\theta)}{I_0} \frac{r^2}{(1 + \cos^2 \theta)}$$

$$R_{\theta} = KCM \quad \text{or} \quad \frac{K^*c}{R(\theta)} = \frac{1}{M}$$

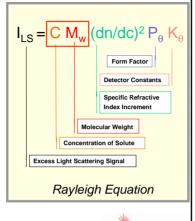
$$R_{\theta} = KCM$$
 or $\frac{K^*c}{R(\theta)} = \frac{1}{M}$

Basic Light Scattering Principles

• The amount of **light scattered** is directly proportional to the product of the molar mass and the molecular concentration

$$I_{LS} = C M_w (dn/dc)^2 P_\theta K_\theta$$

• The variation of scattered light with scattering angle is proportional to the average size of the scattering molecules.


$$\frac{K^*c}{R(\theta)} = \frac{1}{M} \left[1 + \frac{16\pi^2}{3\lambda^2} < r_g^2 > \sin^2(\theta/2) + \cdots \right] + 2 A_2 c$$

Wyatt Technologies

Static Light Scattering Detection

Determines

- Absolute Molecular Weight Independent of Column Calibration
- Radius of Gyration (R_a)
- > 10 nm to 150 nm

Accuracy of Molecular Masses of Test Proteins Determined by Light Scattering

Protein	Mass From Structure	Light Scattering*	Apparent Error
	[Da]	[Da]	[%]
Carbonic anhydrase	29,023	29,800	+2.7
Alcohol dehydrogenase	145,980	149,000	+1.4
β-Amylase	224,340	228,000	+1.6
Apoferritin	476,316	484,400	+1.7
Thyroglobulin	669,000	679,000	+1.5
Ornithine decarboxylase	990,684	978,000	-1.3
Octopus Hemocyanin	3,440,000	3,450,000	+0.3

*DAWN detector model-F, 0.19 was used as dn/dc value for all the proteins Adapted from "Assembly of the Gigantic Hemoglobin of the Earthworm Lumbricus terrestris by A. Riggs et.al. In J. Bio. Chem., Vol. 271, No. 47, pp 30007-30021, 1996.

Basic Light Scattering Equation

$$\frac{K^*c}{R(\theta)} = \frac{1}{M_w P(\theta)} + 2A_2 c$$

$$K^* = 4\pi^2 \left(dn/dc \right)^2 n_0^2 / \left(N_A \lambda_0^4 \right)$$

 n_0 is the refractive index of the solvent.

c is the concentration of the solute molecules (g/ml).

 $R(\theta)$ is the fraction of light scattered per unit solid angle, in excess of the light scattered by the solvent, divided by the incident intensity.

N, is Avogodro's number.

 λ_0 is the vacuum wavelength of the incident light

dn/dc is the refractive index increment, which tells how much the refractive index of the solution varies with solute concentration

 M_w is the weight-average molar mass.

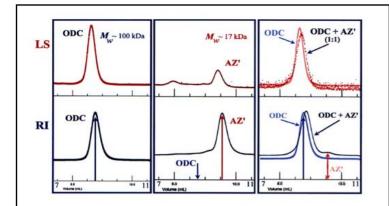
Wyatt Technologies

Precision Detectors

RI & Light Scattering Combined for Mw

 $R_{\theta} = C M (dn/dc)^2 P(\theta) K(\theta)$ Rayleigh Equation

RI Equation RI signal = KRI (dn/dc) C


$$\frac{R_{\theta}}{RI_{\text{signal}}} = \frac{K(\theta) M_{w} (dn/dc) P(\theta)}{K_{RI}}$$

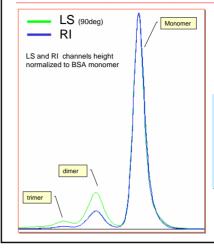
RI signal

For a truly effective measurement of molecular weight the static light scattering detector must be combined with a well matched refractometer

- . The light scattering signal is directly proportional to the Mw.
- The concentration source signal (e.g. RI) is indirectly proportional to the Mw.

Precision Detectors

Light Scattering (LS) and Refractive Increment (RI) Results of ODC and AZ'. ODC, AZ' and ODC:AZ' complex were injected onto an HPLC sizing column, separated and analyzed by LS (DAWN EOS) and RI (OptiLab DSP interfermetric refractometer). The results shown are for 7 to 11 minutes of elution volume. Frame 1 is for ODC, frame 2 for AZ', and frame 3 for the ODC:AZ' mixture at a 1:1 subunit ratio with the ODC trace from frame 1 superimposed for reference.


Static LS Equation for Proteins

$$M_w = \frac{I_{LS}}{RI} K_{total}$$

- 1. Mw is directly proportional to the LS signal
- 2. Mw is indirectly proportional to the conc. source (RI)
- 3. The dn/dc is constant for the protein and it's aggregates (0.186 mL/g)
- 4. Degree of aggregation can be approximated from visual inspection

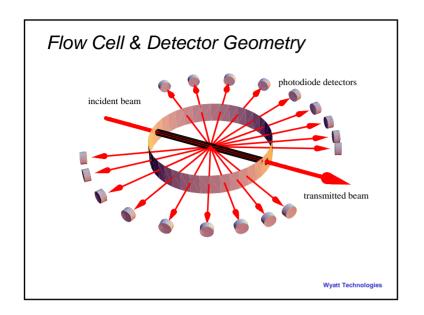
Precision Detectors

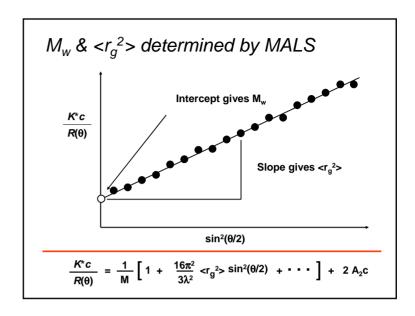
Visualizing Aggregation State

 $M_{\rm w} = \frac{I_{\rm LS}}{RI} K_{\rm total}$

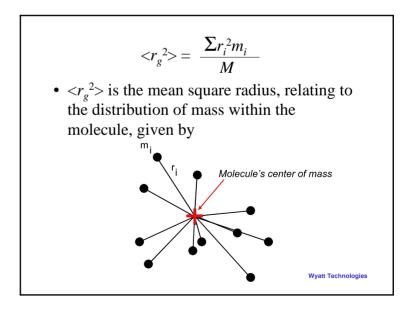
Using visual inspection

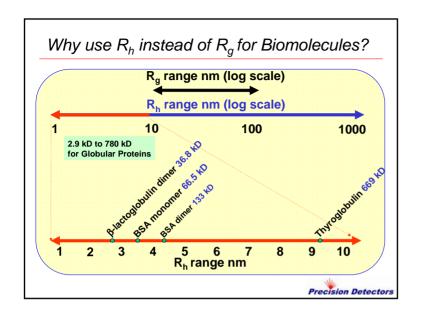
- Monomer (LS is equal to RI)
- Dimer (LS is 2X as large as RI)
- Trimer (LS is 3X as large as RI)

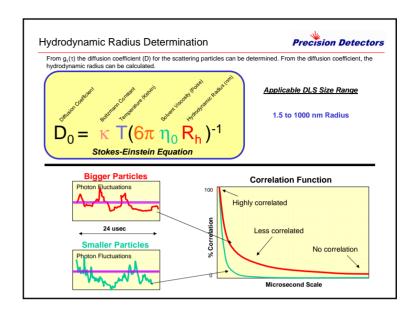

Precision Detectors

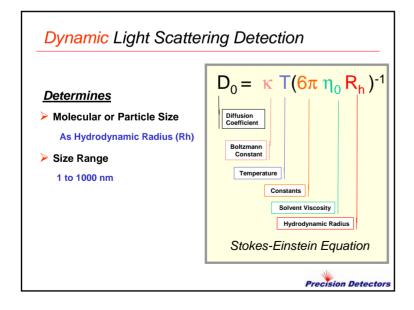

Why Multi-Angle Detection?

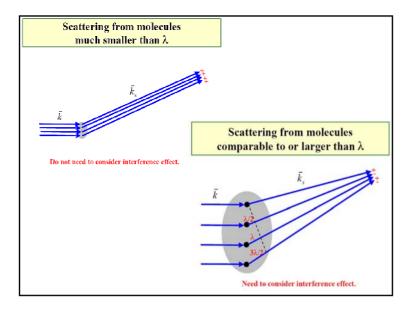
Light Scattering Intensity of Particles Shows an Angular Dependence on Size


- Low angles sensitive to large particles
- > 90 degree angle more sensitive to smaller particles
- > High angles less sensitive to larger particles
- > Back angles better suited for opaque matrices


Precision Detectors






Measures Hydrodynamic Radius, Radius of Gyration, Molecular Weight. Particle Size Distribution.

 Instrument Measures
 -Rh size from 1.7 nm to 1000 nm.
 -Rg size from 9 nm to 150 nm.
 -Molecular Weight 200 to 20,000,000 daltons

 Detects branching, aggregates and calculates Mw.

 DLS, does not require conc or dn/dc measurement for size.

 Batch Mode for non-flow system accessories.

Scattering from molecules comparable to or larger than λ

$$P(\theta) = \frac{\langle I(\theta) \rangle}{\langle I(0) \rangle} = \exp\left(-\frac{16\pi^2}{3} \cdot \frac{R_G^2}{\lambda^2} \cdot \sin^2 \frac{\theta}{2}\right)$$

Visible light, $\lambda \sim 400 - 700 \text{ nm}$

For molecules with a few nm, scattering of visible light have a very week angular dependence.

Difficult to determine the size of the molecules by scattering of visible light.

Biomolecules absorbs UV light.

x-ray scattering

X-ray scattering

The major scatterers of x-ray in a molecule are electrons.

$$\frac{I(\theta)}{I_0} = \frac{8\pi^4 \alpha^2 (1 + \cos^2 \theta)}{\lambda^4 r^2}$$
 Light scattering by a small molecule

$$\frac{I(\theta)}{I_0} = \left(\frac{e^2}{mc^2}\right)^2 \cdot \frac{(1+\cos^2\theta)}{2r^2}$$
 X-ray scattering by an electron

X-ray scattering

In a solution of molecules that each has Z electrons, and a molecular weight of M, and concentration of C

$$\frac{I(\theta)}{I_0} = \frac{2\pi^2 n_0^2}{A \lambda^4 r^2} \left(\frac{dn}{dC}\right)^2 CM \ (1 + \cos^2 \theta)$$
 Light scattering

$$I(\theta) = \frac{1}{I_0} = \frac{1}{2r^2} \left(\frac{e^2}{mc^2}\right)^2 \left(\frac{Z}{M}\right)^2 AMC(1 + \cos^2 \theta)$$
 X-ray scattering

 Z_0 : number of solvent electrons in the volume of a solute molecule

$$\frac{I(\theta=0)}{I_0} - \frac{1}{r^2} \left(\frac{e^2}{mc^2}\right)^2 \left(\frac{Z}{M}\right)^2 \Delta MC$$

X-ray scattering can be used to determine the molecular weight.

Small angle X-ray scattering (SAXS)

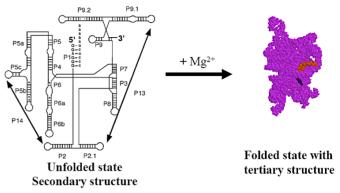
The size of the molecules are always larger than $\lambda \sim 0.1$ nm.

$$P(\theta) = \frac{\left\langle I(\vec{S})\right\rangle}{\left\langle I(0)\right\rangle} = \frac{1}{N^2} \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{\sin 2\pi S r_{ij}}{2\pi S r_{ij}} \qquad S = \frac{2}{\lambda} \sin \frac{\theta}{2}$$

Sr_{ij}<<1 only at very low angle

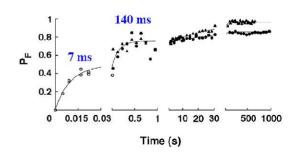
At very low angle SR_G<<1

$$P(\theta) = \frac{\langle I(\theta) \rangle}{\langle I(0) \rangle} = \exp\left(-\frac{4\pi^2 S^2 R_G^2}{3}\right)$$


Guinier formula

Molecular weight and size measured by Light scattering or SAXS

Material	M_w	R_G (nm)
Ribonuclease	12,700	1.48
α-Lactalbumin	13,500	1.45
Lysozyme	13,600	1.43
β-Lactoglobulin	36,000	
	36,700	2.17
Serum albumin	70,000	2.98
Myosin	493,000	46.8
Turnip yellow mosaic virus		10.4
Tobacco mosaic virus	39×10^{6}	92.4


Values in italic are from low angle X-ray scattering.

RNA folding

SAXS has a potential to answer how fast RNA molecule compacts.

RNA folding studied by SAXS

Major compaction happen very fast in two phase:7 ms and 140 ms