Structure Determination by Multidimensional NMR

Questions:

- 1. What are the requirements and limitations of multidimensional NMR methods?
- 2. NMR spectra many types of experiments.
- 3. What is the "Assignment Problem"?
- 5. How are "Assignments" made?
- 6. From peaks to secondary structure.
- 7. How is the protein "model" obtained?
- 8. Comparison of structure determination by X-ray vs. NMR.

CH370 – Hackert (with examples from Dr. David Hoffman)

mB

 2π

R =

Limitations for Structure Determination by Multidimensional NMR Methods

- 1. Protein must be "smallish" (< 300 amino acid residues)
- 2. Protein must be soluble and well behaved in solution. (1-2 mM or 30 mg/mL for a 20kDa protein)
- 3. Must be able to solve the "Assignment" Problem
- 4. Must have sufficient number of distance restraints

NMR Methods – COSY

Two-dimensional **COSY** (**Correlation SpectroscopY**) experiments allow you to **determine the connectivity** of a molecule by determining which protons are spin-spin coupled. One could accomplish the same task by a detailed analysis of spin-spin splittings, given high enough resolution.

Protein Structure Determination

The determination of protein structure by NMR methods is largely based on the ability to detect and quantify **inter-proton distances** by **measurement of the dipolar coupling between protons.**

However - In order to obtain these distances it is necessary to **assign resonance frequencies to the protons with the protein**. The latter is referred to as "assigning the spectrum", or the **assignment problem**.

The **assignments** are based largely on the detection of scalar **coupling through chemical bonds**. Analysis of spectra will give assignments of proton type (e.g. amide, alpha, beta etc.) and carbon type.

First step of NMR analysis is spectrum assignment: (*Identifying the NMR frequency of as many nuclei as possible*).

0	4		c		8	F	6	H			K	B	н.
1	3.0	Cype.	HDS	x	Ch	58-1	CB	<8-1	00	40-1	85.	HB	109
\$	97	D											
3	0.0	21											
4	45	8			35.0		63.7		173.9		4.42		
5	90	С.	8.42	194.2	\$5.2	68.8	42.3	63.6	176.7	174.1	4.44	1.67	1.89,1.57
6	91	8	8.24	116.1	58.L	55.1	63.8	42.0	178.3	1.76.7	4.48	3.92	
1	98	ñ.	8.27	125.6	58.4	\$8.2	19.4	63.8	176.6	173.3	4.48	1.95	
8	92		9.29	115.2	57.0	32.3	64.2	19.4	172.9	176.7	4.60	3.94	
9.	- 24	I	8.62	124.3	61.4	57.8	37.6	64.1	175.0	173.0	4.22		
LQ.	25	L	8.70	131.2	25.2	61.L	43.9	37.6	175.9	178.0	4.05	1.62	
11	- 96	¥.	7.82	119.1	58.1	\$5.9	42.5	43.9	171.9	175.9	4.62		
U.	97	8	7.62	121.6	57.0	58.0	65.3	42.4	171.4	171.9	4,99	3.77,3.66	
1	98	D	9.14	126.0	58.1	\$7.0	40.B	65.2	174.8	171.3	4.48		
14	35	5	8.76	115.8	39.1	12.2	29.0	40.9	176.2	174.8	4.14	2.33,2.06	
15	300	B.	0.82	118.1	35.6	55.D	32.4	29.0	174.8	176.3	4.65		
14	101	L	0.60	111.5	33.7	05.4	46.7	32.6	174.3	176.0	5.32	1.66,1.60	1.06
17	102	R	8.70	119.6	53.7	\$3.9	42.0	46.5	173.5	174.2	5.20	2.75	
	103	Ŷ	9.41	127.0	61.8	53.8	38.4	42.0	174.2	173.5	5.11	2.05	
10	104	I	0.07	101.1	60.0	61.3	71.4	33.4	172.0	174.2	3,13		1.17
10	105	e .	9.96	129.7	55.0	60.0	24.9	71.6	175.2	172.2	5.21		
12.	105	E	8.87	107.1	54.0	85.0	29.7	32.0		175.4	4.78	1.85	
23	107	9	no		36.9		22.2						
23	105	T	7.94	114.4	61.4	56.8	71.0	32.5	172.3	176.0	4.65	4.04	1.12
2.4	109	8	8.89	103.8	35.0	61.6		70.9		172.5	4.31		
23	110	8			58.1		39.3						
18	111	D	8.47	119.8	55.1	\$3.0		39.3		173.9	4.51	3.76	
17	112	R.			56.9		28.4		172.5		5.19		
28	112	T	9.89	123.6	62.9	56.9	69.1	20.6	172.2	173.5	4.35	4.14	1.16
2.9	114	B	8.55	128.8	35.1	62.7		69.1		173.3	4.36	1.68, 1.80	
14	115	4	9.15	195.2	69.3	54.8	39.2	32.6	174.0	174.0	4.79	2.05	1.13,0.98
55	116	L	9.50	126.4	52.7	\$2.3	44.9	33.2	175.3	173.9	5.45	3.8	
58	117	8	9.18	117.8	57.t		63.1		173.6	175.9	5.17	3.85, 3.72	
11	110	I	9.00	129.0	61.0	57.1	29.3	62.1		173.7	4.41	2.12	
14	119	0	8.95	197.9	54.8	61.L	30.9	39.3		1.72.7	5.01	1,95, 2.12	

intraresidue NOEs	215
sequential NOEs (residue f to $(+1)$	178
medium-range NOEs (residue 1 to 1 + 2, 3, 4)	18
lone-tanue NOEs	1.43
dibederal anele restraints	70
hydrogen bond restraints	27
total structural restraints	651
no. of unique starting structures for simulated annealing	10
no. of simulated annealing runs, differing in initial trainclusion	200
mod for backbone atoms (residues 17-77)	0.87 Å
most for side chain atoms (residues 17-77)	1.78 Å
av no. of NOE violations > 0.2 Å	3.2 ± 1.0
av no. of NOE wightions >0.5 Å	0
(or discuss)	- (*)
residues in most favored regions of the Ramachandran plot	$71.2 \pm 2.6\%$
residues in additionally allowed regions of the Ramachandran plot	$21.2\pm4.6\%$
residues in generously allowed regions of the Ramachandran plot	$5.8\pm2.7\%$
residues in disaflowed regions of	$1.9 \pm 0.9\%$
the Ramachandran plot	
mod for covalent bonds	0.0034 ± 0.0001
rend for covalent angles	0.511 ± 0.015
runsd for improper angles	0.581 ± 0.016

Comparison of X-ray vs. NMR Structure Determination

1.	Large protein, crystals	X-ray
2.	Small protein, no crystals	NMR
3.	Small protein, crystals	X-ray + NMR
4.	High resolution	X-ray
5.	Surface features of side chains	X-ray
6.	Flexibility / Motions	NMR
7.	Interactions	NMR