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Milliore of compounds to go. Database analyses keep ong
computer clogged, while a microarry analysls chokes the
other. The computer hopping begins: sedoes the throbbing

» 7 inyour brain. Exhale. Penguin Computing® Clusters com-
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centizlly-rmanaged Soyld ClusterWare™ HPC makes large
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VIass Spec and MICrOArrays / Applications

Nome —the genome of an organism is its whole hereditary informati
coded in its DNA (or, RNA for some viruses) and includes both the
ding (genes) and non-coding sequences of the DNA.

oteome — Proteomics is often considered the next step in the study c
logical systems, after genomics. It is much more complicated than
1omics, mostly because while an organism's genome is rather
1stant, a proteome differs from cell to cell and constantly changes
ough its biochemical interactions with the genome and the
/ironment.

eractome — whole set of molecular interactions in cells, in the conte
proteomics, it refers to protein-protein interaction network(PPI), or
tein network (PN).

stems Biology - seeks to understand how biological systems functic
studying the relationships and interactions between various parts of
logical system (e.g. metabolic pathways, organelles, cells,
ysiological systems, organisms etc.), it is hoped that eventually a



The Proteome

All an organism’s cells carry the same (_\]Emwm ey

Genome, and it 12 Static. Genomes do o
not descnibe function. They are a parts T o

list mn[::é"i.u o
™ |

Dnfferent cellz express different proteins. M
The type and quantity of this expression =~ |e==e= " s

changes. J_ i et
The Proteome 15 Dynamic. It 1s the total

of all protemns expressed by a particular SR, S,
cefl at a given fime, under specific

conditions.

A Proteome cannot be studied the way a Genome 1s sequenced.
There has to be a specific biological question behind an experiment.
The questions may be either very broad or strictly defined.




nsight review articles NATURE[VOL 42213 MARCH 2003w it com/natur
lass spectrometry-based proteomice

di Aebersold® & Matthias Mannt

titute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA (e-mail rabersold @systemshiologyvorg)
nter for Experimental Biolnformatics{CEBI), Department of Biochemistry and Molecwlar Biology, University of Southern Denmark,
ipusvej 55, DR-5230 Odense M, Denmark (e-mail: mann@bmb.sdu.dk)
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ent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for
ecular and cellular biology and for the emerging field of systems biology. These include the study of

tein-protein interactions via affinity-based isolations on a small and proteome-wide scale, the mappin
nerous organelles, the concurrent description of the malaria parasite genome and proteome, and the

eration of quantitative protein profiles from diverse species. The ability of mass spectrometry to identi
, Increasingly, to precisely quantify thousands of proteins from complex samples can be expected to
act broadly on biology and medicine.

Note: HT Proteomics iIs restricted to those
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Dhfferential Expression Proteomics
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Two Dimensional Gel Electrophoresis |

Isoelectric loousing is performed on

precast gel strips nsing commercial
instruments. Many pH ranges are

available. Multiple strips can be run in
parallel.

An immaobilized pH gradient is created In
a polyacrylamide gel sirip by
incorporating a gradient of acidic and
basic bulfering groups when the gel is

cast.

Eesolution is determined by the slope of
the pH gradient and the feld strength.

Loading capadty depends on gel size and
thickness.

In 2Dy IEF/PAGE, the gel strip from IEF
is loaded into a single large well.
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vvitrn e rnevv gceriolric datd Dascos Of TTIOUCT SPCELICS, SULT as EsliIChiClia
oli, Saccharomyces cerevisae, mouse, and human, the sequences of
nany/most proteins of biological interest will in principle be known, and the
roblem of characterizing a protein primary structure will be reduced to
lentifying it in the data base.

Within the past few years research groups have demonstrated how MS
an be used for identification of proteins in sequence data bases. One
pproach is to cleave the protein with a sequence-specific proteolytic
nzyme, measure molecular weight values for the resulting peptide
nixture by mass spectrometry, and search a sequence data base for
roteins that should yield these values. Search algorithms can utilize
W resolution tandem mass spectra of selected peptides (<3 kDa) from the
rotein degradation. Yates and coworkers compared the MS/MS sequence
ata to the sequences predicted for each of the peptides that would be
enerated from each protein in the data base. In the PEPTIDESEARCH
equence tag approach of Mann and Wilm, a partial sequence of 2-3
mino acids is assigned from the fragment mass differences in the
AS/MS spectrum. This partial sequence and its mass distance from each
nd of the peptide (based on the masses of the fragment and molecular
ns) are used for the data base search. Often, a single sequence tag



Tryptc Digest of ADH: Expected Pephdes vs. Those Detected

STAGKMKCKRAVLWEEKKPFSIEEVEVAPPKAHEVRIKMVATGIC RSDDHVWSGTLVTR

LPVIAGHEAAGIVESIGEGYTTVRPGDKVIPLFTPQC GRCRVE KHPEGNFCLKNDLSMP
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Cleavages Observed In MS/M S of Peptides

Yn-i
r—-- Zn-l
- — == |low energy I [==-
i~ s :an : Wi
-HNHCH+COENH{?HuCOHNH-
I : RIIILLLLLLEEE :..- ...... :
Ri1 1+ ICHR
) —: : : .I. ......
4 b-i S i R” .............. high energy
C. ===

CID (Collision InDuced) Spectra — adds sequence data to
mass mapping for improved database 1dentification!



Peptide mass fingerprint of Spot A
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de-mass fingerprinting tool from the UCSF Mass Spectrometry Facility that tries to fit a user's mass spectrometry data to a protein sequence in an existing database and thus su;

of the user's protein. The MS input data should be generated by analyzing the peptides produced by the enzymatic digestion of a user's protein.

nProspector Home | MS-Tag | MS5-Seq |[MS-Edman [MS-Fit at UCSF (San Francisco)
MS-Digest MS-Product |MS-Comp | DB-Stat MS-Isotope

ase: | SwissProt.012601
‘rame translation: |3 'I

1 Hits: ™ From: Imeit 'I Filename: ||aStrBS
lits to file: I Filename: ||aStrBS

52 |Al Bl

f Protein: (from |1UUU Dato |15UUUU Da) All ™
n pl: (from BO  to[100 YA W

3 ITrypsin j

X, # of missed cleavages: |1_

nes modified by |unmodified -

inus: |Hydrugen 'l C terminus: |Free Acid vl

e ID (comment): [Unknown A

Reported Hits: |15

e

il Bl Oxidation of M

(default) Protein N-terminus Acetylated
Acrylamide Modified Cys

Peptide N-terminal Gin to pyroGlull

User Defined Modification 1:

|Phusphurylatiun of 5, Tand Y j

OR
logy Mode (select any mode but identity)
h mode: |identity M

f matches with NO AA substitutions: |1—

Peptide masses are: |mﬂnﬂi50tupic 'l

Min. # peptides required to match: |3_

Peptide Masses

mass tolerance: +/- [15

IPPm j'

A8S

1007.
1024.
1025,
1025.
1057
1045
1090
1106
1159
1164
1164
1179.
1184
1193.
1233
1234,
1Za3.
1267.
1277.

905.6874
573.5183
989.6093
995.5787

4948
4374
4959
7433

.0184
.5657
L0471
.5649
.5z035
.5909
.0664

6002

.5958

6111

L5911

6510
6858
7091
1065

D

j Instrument: IMALDl'TOF :I' Report MOWSE Scores: F Pfactor: |0-4

Mass accuracy
tolerance = 15 pp

This means that th
mass Is within
0.015 Da at
m/z 1000



op on your browser if you wish to abort this MS-Fit search prematurely.

- ID (comment): Unknown A

se searched: SwissProt.012601

lar weight search (1000 - 150000 Da) selects 90539 entries.
range: 92236 entries.

1ed molecular weight and pl searches select 90539 entries.
search selects 858 entries (results displayed for top 15 matches).

red modifications: | Peptide N-terminal Gln to pyroGlu | Oxidation of M | Protein N-terminus Acetylated | Acrylamide Modified Cys |

Peptides Peptide Mass Peptide Masses Digest Max. # Missed Cysteines Peptide Peptide Input #
fatch  Tolerance (+/-) are Used  Cleavages Modifiedby N terminus Cterminus  Peptide Masses
3 15000 ppm  monoisoiopic Trypsin 1 unmodified Hydrogen (H) Free Acid (O H) 46

Result Summary

VOWSE # (%) Protein ., SwissProt.012601 .
Score Masses MW (Da)/pI Species Accession £ Protein Name
Matched
86e+005 9/46 (19%) 16930.2 / 4.56 HUMAN MYOSIN LIGHT CHAIN ALKALIL NON-MUSCLE ISOFORM (MLC3NM) (LC17A) (LC17-NM)
86e+005 9/46 (19%) 16961.2 / 4.46 HUMAN MYOSIN LIGHT CHAIN ALKALIL SMOOTH-MUSCLE ISOFORM (MLC3SM) (LC17B) (LC17-GI)
86e+005 9/46 (19%6) 16975.3 / 4.46 RAT MYOSIN LIGHT CHAIN ALKALI SMOOTH-MUSCLE ISOFORM (MLC3SM)
77e+004 7/46 (15%) 15730.9 / 4.80 MOUSE MYOSIN LIGHT CHAIN ALKALIL NON-MUSCLE ISOFORM (MLC3NM)
41e+004 7/46 (15%) 66018.0 / 8.16 HUMAN KERATIN, TYPE I CYTOSKELETAL 1 (CYTOKERATIN 1) (K1) (CK 1) (67 KDA CYTOKERATIN) (HAIR 2
PROTEIN)

19e+003 4/46 (8%) 15282.4 / 6.10 STRPU PROFILIN

420  5/46 (10%) 16983.3 / 4.63 CHICK MYOSIN LIGHT CHAIN ALKALI NON-MUSCLE ISOFORM (FIBROBLAST) (G2 CATALYTIC) (LC17-NM)

419 5/46 (10%) 16987.4 / 4.52 CHICK MYOSIN LIGHT CHAIN ALKALIL SMOOTH-MUSCLE ISOFORM (GIZZARD) (G2 CATALYTIC) (LC17-GI)

ANNEXIN I TYPE I (LIPOCORTIN II) (CALPACTIN I HEAVY CHAIN) (CHROMOBINDIN $8) (P36) (PROTE!

0,
1 446 (3%) 385453 /8.59 XENLA (PLACENTAL ANTICOAGULANT PROTEIN IV) (PAP-IV)

286  5/46 (10%) 22156.3 / S.03 RAT MYOSIN LIGHT CHAIN 1, SLOW-TWITCH MUSCLE B/VENTRICULAR ISOFORM

262 3/46 (6%) 19590.2 /9.34 BGMV AL2 PROTEIN (19.6 KD PROTEIN)

220 5/46 (10%) 21932.2 / 5.03 HUMAN MYOSIN LIGHT CHAIN 1, SLOW-TWITCH MUSCLE B/VENTRICULAR ISOFORM (MLC1SB) (ALKALI)
211 3/46 (6%) 16990.5/6.92 ECOLI HYPOTHETICAL 17.0 KDA PROTEIN IN HINR-PURU INTERGENIC REGION

22 3746 (606 17947.3 /524 ARATH GLYCINE CLEAVAGE SYSTEM H PROTEIN 1. MITOCHONDRIAL PRECTURSOR.



matches (19%). 16930.2 Da, pI =4.56. Acc. # P16475. HUMAN. MYOSIN LIGHT CHAIN ATLKALIL NON-MUSCLE ISOFORM (MLC3NM) (LC17A) (LC17-NM).

MH™  Delta " artendPelrtlde Sequence
ted matched ppm (Click for Fragment Tons)

787 995.5890-10.3014 111 119 (R HVLVILGEK(M)

059 1023.5056 -9.4785 14 21 (K)EAFOLFDR(T)

9111233.5898 1.0857 99 110 (KEGNGTVMGAEIR(H)

187 1354.7331-10.3935 38 50 (R)ALGONPTNAEVLE(Y)

928 1544.6869 3.8248 82 94 (K)DOGIYEDYVEGLE(Y)

5981722.8485 6.5620 95 110 (R)VIDEEGNGTVMGAEIR(H)

2291786.8248 -1.0335 80 94 (K)NEDOQGTIYEDYVEGLRE(YV)

274 1888.0043 12,2526 64 79 (K)VLDFEHFLPMLOTVAE(N)

294 2226.1552-11.6082 99 119 (K)EGNGTVMGAEIRHVLVTLGEK(M) 1Met-ox

Modifications

tched masses: 905.6874 973.5183 989.6093 1007.4948 1024.4374 1025.7433 1037.5184 1045.5657 1090.5471 1106.5649 1139.5205 1164.5909 1165.5664 1179.6002 1184.5'
11 1234.6510 1263.6858 1267.7091 1277.7065 1300.5432 1307.6644 1308.6596 1340.6612 1341.6288 1357.6707 1373.6434 1475.7257 1493.7172 1532.6160 1699.8525 17(
76 1723.8256 1638.9438 1993.9497 2211.1041

ched peptides cover 50% (77/151 AA's) of the protein.
ve Map for This Hit (MS-Digest index #): 11572

matches (19%). 16961.2 Da, pI=4.46. Acc. # P24572. HUMAN. MYOSIN LIGHT CHAIN ALKALIL SMOOTH-MUSCLE ISOFORM (MLC38M) (LC17B) (LC17-GI).

MHT  Delta it artendPeITUde Sequence
ted matched ppm (Click for Fragment Tons)

787 995.5890-10.3014 111 119 (RMHVLVTLGEK(M)

959 1025,5056 -9.4785 14 21 (K)EAFQLFDR(T)

911 1233.3898 1.0837 99 110 (K)EGNGTVMGAEIR(H)

187 1354.7331-10.3935 38 50 (RM)ALGONPTNAEVLE(Y)

028 1544.6869 3.8248 §2 94 (K)DOGTYEDYVEGLE(V)

5981722.8485 6.5620 95 110 (R)VFDEEGNGTVMGAEIR(H)

229 1786.8248 -1.0535 80 94 (K)NEDOQGIYEDYVEGLE(Y)

274 1888.0043 12.2526 64 79 (K)VLDFEHFLPMILOTVAE(N)

294 2226,1552-11.6082 99 119 (K)EGNGTVMGAEIRHVLVILGEK(M) 1Met-ox

Modifications

atched maszes: 905.6874 973.5183 989.6093 1007.4948 1024.4374 10257433 1037.5184 1045.5657 1090.53471 1106.5649 1139.5205 1164.5909 1165.5664 1179.6002 1184.5
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Metabolic stable- Isotope tagging Stable-isotope incorporation
isotope labelling by chemical reaction via enzyme reaction
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Summary ot the functions o1 various proteins identined in specinc ussues of W, truncatila.
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Protein Correlation Profiling

Leonard .. Foster,'"* Carmen L. de Hoog,"* Yanling Zhang,™" Yong Zhang,™" Xiachui Xie,” Vamsi K. Mootha,>"®

and Matthias Mann'~"*

" Center for Experimental Biolnformatics (CEBI), Department of Biochemistry and Maolecular Biology, University of Southern

Denmark, Campusvej 55, DK-5230 Odense M, Denmark

? Centre for Proteomics, Department of Biochemistry and Malecular Bio logy, University of British Columbia, Vancouver,

BC VET 154, Canada

. Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Martinsried, Germany D-82152
4 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China

% Broad Institute of Harard and MIT, Cambridge, MA 02139, USA

® Department of Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA

*Contact: mmann@biochem.mpg.de
DOl 10101 6/.cell.2006.03.022

SUMMARY

Frotein localization to membrane-enclosed
organelles is a central feature of cellular organi-
zation. Using protein correlation profiling, we
have mapped 1,404 proteins to ten subcellular
locations in mouse liver, and these correspond
with enzymatic assays, marker protein profiles,
and confocal microscopy. These localizations
allowed assessment of the specificity in pub-
lished organellar proteomic inventories and
demonstrate multiple locations for 39% of all or-
ganellar proteins. Integration of proteomic and
genomic data enabled us to identify networks
of coexpressed genes, cis-regulatory motifs,
and putative transcriptional regulators involved
in organelle biogenesis. Gur analg,rms ‘ncs bio-

P . [ P | e & oo I oo ome e o —

microscopic examination of an organelle, certan proteins
or enzyme activities that appear to localize exclusively to
that organelle are considered markers, essentially defining
that compartment.

Recently, proteomics (de Hoog and Mann, 2004) has
bean applied to study organelle composition. The genetic
tractabilty of Saccharomyces cerevisiae has allowed
a large fraction of yeast ORFs to be tagged for localization
studies (Ross-Macdonald et al., 1899:; Kurmar et al., 2002;
Huh et al., 2003), but such an appreach is more challeng-
ing in mammalian systems dus, in part, to artifacts from
overexpression (Simpson et al., 2000). Mass spectrome-
try-based proteomics (Aebersold and Mann, 2003) is of-
ten employed to characterize the protein composition of
organelle-enriched fractions. Indeed, protein catalogs
are now available for virtually all cyteplasmic crganelles
as well as most of the major nuclear ones (reviewed in
Yates et al., 2005). However, due to the high sensitivity
aF rmaee enactraimatare amdd ha Aiffeiiltiase inhbaramt m i



TIssue

centritugation

Mitechondria

F1 ATP synthase f3 -

Early endosome
antigen 1~

1,2-0-mannosidase -

corraiation
profiles

Intensity

e
<

Early
endosomes

=
—

v

22,260 peptides

J

2197 proteins

v

1,900 proteins quantified

v

1,404 proteins localized —— [ N”‘:'

W

( C}I;;ﬂi | 4——— 1,258 cytoplasmic proteins

—— W T
CMi ion T ‘Proteas
'.,EM'tMg;?d"m,r‘ﬂL-.__ / Cytoplasmic ——F‘?’ 50

T~ 'x nrganelles ). =

\35 “Plasma

Endnplasmmx | membrar
1 reticulum | ‘Z XY ) (PM}EE:

(ER} 225

Gulgw L Recyrclmg
67 /% | endosomes ]
ERIGDE I\
' ﬁ.fesmleg |~ Early ™ W(RE) 326,/

"-{ERGDU} I endnsnmes
\_220 / “(EE)76/

Eirmiira 1 Tiraanalla Deafilivna wiith Cradiant Cantrifiiaat e



| Ne birtn or ivioleculalr blology.

nsgide, linked together by hydrogen bonds.,  This
ltmtt-ur-e a3 deseribed ig rather ill-defined, and for
this reaszon we shall not comment
on at.

We wish to put forward a
redieally different structure for
the salt of deoxyribose nucleic
geid., This structure haz two
helical chains each coiled round
the same axis (see diagréan). YWe
have made the menal chemioal
assuwmptions, namely, that each
chain. consiste of phosphate di-
egter groups joining p-n-deoxy-
ribofurancse residues with 3°,5°
linkages, The two chains (but
not their bases) are related by a
dyad perpendicular o the fibre
axia, Both chains follow right-
handed helices, but owing to
the dyad the sequences of the
atome in the two chains run
in opposte directions. Each
chain loosely ressmbles Fur-
barg'a® model No, 13 that is,

the helix and the phosphates on
IABEAmmatic. ‘ThE fwe the outside. The configuration
Q’Em gymbolize the ©of the sogar and the atoms
wn phosphate—sugar - it i - =
halng, D the Dorl NaBr it = close to 1_"L|_1'Pﬁrga
ontal Tods the peims of standard uunﬁgurutlnn , the
Lﬁﬁﬁ{'““ﬁﬁﬂﬂﬂﬁ sugar being roughly perpendi-
ime marks the Abre axks  oular to the attached base, There

Nature — 1953
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Automated dye-terminator sequencing

4-fluorescently labelled dideoxy dye terminators

ddATP
ddGTP pool and load in a single well or capillary
33?;5 « scan with laser + detector specific for each dye

- automated base calling
- very long reads (~ 1000 bases)/run

NNN AAT Eﬁlﬁﬂf ACG ﬁCE'LEAGT AT HGG%EG AAT TCG REJCT CGGT .-NGEEGGGG HTCGTEHT AGAGT CE-“._EIT:" GCAGGGC ﬁ-;’ﬂGD AAMGCTTG g-DGT AT TC

ﬂ il M i
| | |
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Physical mapping and sequencing of the human genome
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IMm Kent is a research scientist at UC Santa Cruz.

he human genome project was ultimately a race between Celera

enomics and the public effort, with the final push being a bioinformatics
‘oblem to put all of the sequence reads together into a draft genome
2quence. Jim Kent was a grad student at UCSC, who worked for weeks
aveloping the algorithm to put all of this together, beating Celera by 3

ays to an assembled human genome sequence.

Is efforts ensured that the human genome data remained in the public
omain and were not patented into private intellectual property.

ent built a grid of cheap, commodity PC’s running the Linux operating
/stem and other Freeware to beat Celera's, what was thought of then as
e, world's most powerful civilian computer. In June 2000, thanks to the
ork done by Kent and several others, the Human Genome Project was
ole to publish its data in the Public Domain just hours ahead of Celera.

ent went on to write BLAT and the UCSC Human Genome Browser to helj
1alyze important genome data, receiving his PhD in biology in 2002. Toda
- UCSC he works primarily on web tools to help understand the human
enome. He helps maintain and upgrade the browser, and has worked on



Finding genes In genomes

compare to EST or cDNA sequence
look for open reading frames

similarity to other genes and proteins

Gene prediction algorithms (identifying
splice sites, coding sequence bias, etc.)



Genes can also be identified by sequencing cDNAs at random. The
sequenced cDNAs are called ESTs (expressed sequence tags)

gene
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cgttttecatgategggactaacTTTTT

tcatgatcgggactacgTTTTT

cgggactacgTTTTT > cDNA

atgcgggactacgTTTT

ggactacgTTTT y



The BIG QUESTION:

Why do we have so few genes?

2Cles (Genome size Number of ger
ﬁan (Homo sapiens) 2.9 billion base pairs 25,000 - 30/
t fly (Drosophila melanogaster) 120 million base pairs (KX
rm (Caenorhabdltis elegans) 97 million base pairs 19,
lding yeast (Saccharomyces cerevisiae) 12 million base pairs B,
0l 4.1 million base pairs 4 ¢




Genomics vs. Proteomics

NVith the completion of a rough draft of the human genome
nany researchers are looking at how genes and proteins
nteract to form other proteins. A surprising finding of the
luman Genome Project Is that there are far fewer protein-
oding genes in the human genome than proteins in the
\uman proteome (20,000 to 25,000 genes vs. about

,000,000 proteins). The human body may contain more

han 2 million proteins, each having different functions.

)

"he protein diversity is thought to be due to alternative

plicing and post-translational modification of proteins.

"he discrepancy implies that protein diversity cannot be

ully characterized by gene expression analysis, thus
)roteomics is useful for characterizing cells and tissues.



Functional genomics and proteomics

|dentify genes and proteins encoded in the
genome (Gene finding)

Measure gene expression on a genome-wide
scale (microarrays)

|dentify protein function
30-50% of the genes in a genome are of unknown function

|dentify protein interactions, biochemical
pathways, gene interaction networks inside cells




Methods of making microarrays

« Robotic SpD’[ting DNA microarray (chip)
* using a printing tip
* using inkjets

« Synthesis of oligonucleotides
» photolithography (Affymetrix) =
* using inkjets E
 Digital Light Processor (DLP) or HHAL
Digital Micromirror Device (DMD)

Microarrays can be used to study gene expression, DNA-protein
interactions, mutations, protein-protein interactions, etc., all on a genome-
wide scale
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Affymetrix GeneChip

courtesy: www.affymetrix.corn




NOormal Lancer
Cell A Cell B
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In cell B, relative to cell A,
Gene 1 is equally expressed

Gene 2 is overexpressed

(Gene 3 is underexpressed
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DNA microarray after hybridization of fluorescent probes
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Original microarray image

Colour representation of
differential gene expression

Red
Green Red Green J/
200( 10000} 50.00 . Gene 1
4800 4800| 1.00 . Gene 2
9000 3001 0.03 Gene 3

e Large amounts of data can be displayed in this manner

e Gene expression data can be computationally analyzed and organized to

reveal patterns



Data after hierarchical clustering

Experiments
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Functionally related genes are often co-expressed

A cluster of co-expressed genes

/ Ribosomal protein 1
7 Ribosomal protein 2

Ribosomal protein 3
— Ribosomal protein 4
— Ribosomal protein 5
—— Ribosomal protein &
=~ Unknown Gene X
\\“‘ Ribosomal protein 7

Ribosomal protein 8

Thus, unknown Gene X may also be a ribosomal protein



o. cerevisiae mitotic cell-cycle

cde 15 cdc28 elu

Brenda Andrews lab, University of Toronto




Jistinct types of diffuse large
)-cell lymphoma identified
)y gene expression profiling

h A, Alizadeh", Michael B. Eisen®*, R. Eric Davis®, Chi Ma’, Izidore S. Lossos®, Andreas Rosenwald®, Jennifer C. Boldrick',
jeer Sabet’, Truc Tran®, Xin Yu’, John |, Powell’, Liming Yang', Gerald E. Marti’, Troy Moore”, James Hudson Jr’, Lisheng Lu'",
vid B. Lewis", Robert Tibshirani'', Gavin Sherlock’, Wing C. Chan'’, Timothy C. Greiner'’, Dennis D. Weisenburger'’,

mes 0, Armitage', Roger Wamke'", Ronald Levy®, Wyndham Wilson'®, Michael R. Grever'®, John C. Byrd'’, David Botstein',
rick 0. Brown"™ & Louis M. Staudt®

MATURE| VOL 403 2 FEEBRUARY 2000 | wwrw.nature com



ise large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma, is clinically heterogeneous: ¢
atients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease, W
josed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours. Using DNA
roarrays, we have conducted a systematic characterization of gene expression in B-cell malignancies. Here we show thattl
iversity in gene expression among the tumours of DLBGL patients, apparently reflecting the variation in tumour prolifera
, host response and differentiation state of the tumour. We identified two molecularly distinct forms of DLBCL which had g
ression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germi
ire B cells ('germinal centre B-Tike DLBCL’}; the second type expressed genes normally induced during in vitro activatior
pheral blood B cells (‘activated B-like DLBGL'). Patients with germinal centre B-like DLBGL had a significantly better ove
jival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can 1
itify previously undetected and clinically significant subtypes of cancer.

pite the variety of clinical, morphological and molecular param-
s used to classify human malignancies today, patients receiving
same diagnosis can have markedly different clinical courses and
tment responses. The history of cancer diagnosis has been
ctuated by reassortments and subdivisions of diagnostic cate-
es. There is little doubt that our current taxonomy of cancer still
ps together molecularly distinct diseases with distinct clinical
notypes. Molecular heterogeneity within individual cancer
nostic categories is already evident in the variable presence of
imosomal translocations, deletions of tumour suppressor genes
numerical chromosomal abnormalities. The classification of
1an cancer is likely to become increasingly more informative
clinically useful as more detailed molecular analyses of the
ours are conducted.
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Diffuse large B-cell lymphoma is the
most common subtype of non-Hodgkin’s
lymphoma. With current treatments, long
term survival can be achieved in only 40
of patients. There are no reliable indicatt
— morphological, clinical,
immunohistochemical or genetic — that
can be used to recognize subclasses of
DLBCL and point to a differential

therapeutic approach to patients.

‘Lymphochip’, a microarray carrying 18,
clones of complementary DNA designec
monitor genes involved in normal

'hat type of cancer? abnormal lymphocyte development.

'hat Is the underlying molecular basis?

flh 2t 1= thea Aantiraal freaatrmmaln D



ox 1: Gene-expression profiling with microarrays

gine a 1-cm? chessboard.
tead of 64 squares, it has
usands, each containing

A from a specific gene. This
1 DNA microarray. The

ivity of each gene on the
roarray can be compared
wo populations of cells (A
1B).

When a gene is expressed
nakes a transcript, and the
ole population of these
ducts from a cell can be

tagged with a fluorescent dye
(say, red for the A cells, green
for the B cells). The microarray
is bathed in a mixture of the
red and green transcripts.
Those that originate from a
specific gene will bind to that
gene on the microarray, turning
red, green or somewhere in
between, depending on the
relative numbers of transcripts
in the two cell types.

So the microarray provides

a snapshot of gene activity fc
thousands of genes. Data
from many experiments can
be compared and genes that
have consistent patterns of
activity can be grouped or
clustered. In this way, genes
that characterize a particular
cell state, such as malignanc
can be identified — so
providing new information
about the biology of the cell
state. Mark Patter:



1lerarcnical ciustering or gene expression data (as ratios)
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Clustering of tumour samples from cancer

patients can be used for molecular

classification of cancers. This may be useful

for diagnosis and treatment

Subtypes of Diffuse Large B-Cell Lymphoma
(DLBCL)

Activated B-like DLBCL

GC B-like DLBCL

= g [ |
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Nature (2000) 403: 503
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SNy  Clustelring arlalysls, AllZaucl] €t al. COUlU scpalalc LD CL 11110
vo categories, which had marked differences in overall survival of the
atients concerned. The gene expression signatures of these subgrou
orresponded to distinct stages in the differentiation of B cells, the tyg
f lymphocyte that makes antibodies.

A B c
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- Z £ >
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The Interactome ARTICLE!

roteome survey reveals modularity of
he yeast cell machinery

ne-Claude Gavin'*t, Patrick Aloy**, Paola Grandi', Roland Krause'”, Markus Boesche', Martina Marzioch',
ristina Rau', Lars Juhl Jensen®, Sonja Bastuck’, Birgit Dﬂmpelfeldj, Angela Edelmann', Marie-Anne Heurtier
srena Hoffman', Christian Hoefert!, Karin Klein', Manuela Hudak', Anne-Marie Michon',

algorzata Schelder', Markus Schirle!, Marita Remor', Tatjana Rudi', Sean Hooper?, Andreas Bauer',

'wis Bouwmeester', Georg Casari', Gerard Drewes', Gitte Neubauer', Jens M. Rick', Bernhard Kuster',

er Bork?, Robert B. Russell® & Giulio Superti-Furga'*

otein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here
: report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and ma
ectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified
veral times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the
mposition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexe
which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a
rersification of potential functions. Support for this modular organization of the proteome comes from integration wi
ailable data on expression, localization, function, evolutionary conservation, protein structure and binary interactions
is study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform fi
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Strategy

Yeast genome
TAP cassette integration
TAP fusion expression

Overall purifications

Successful purifications

6,466 ORFs
5,474 (85%)
3,206 (59%)

4

3,206
1,993 (62%)

MS protein identifications 2,780 (589%)

‘Social affinity’
scoring (log odds)

lterative clustering

Selection
(acouracy/coverags = 70%)

Complexes

Cores
Modules
Isoforms

{

1,159,003 pairs

4

1,784 sets of
complexes

92 sets of
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External dataset

MIPS/SGD
2002 genome
annotation

Proteome size:
Ghaemmaghami e

Huh et al.20
Washburn et al.?’
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Aloy et al.™
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Systems Biology Approach

Design new perturbation experiment to maximize
information gain about model

t of perturbations/ | | Cell population executing Proteome-wide
conditions pathway of interest observation

ne knockdown Quantiat ——
: uantitation | PTM raction
Jerexpression g :
armagﬂlﬂgi{:al profiles ' profiles | maps, tc.
Ulation
P Determin
Model Mathematical Proteome-wide * 'goodness ¢
parameters model of pathway prediction
abc T :
: _), "T_-__L‘::f T _), Quantitation PTM Interaction
a B X rJ::—‘-'?-‘-’-«- profiles  profiles | maps, etc.
ptr-mn--ngr_s__infql___:r;ﬂu:—p

\ Refine model parameters to improve fit




	Cleavages Observed in MS/MS of Peptides

