Fall '13	CH3	370	Name	<u> </u>
Hackert	HW-1 (20 pts) – Due	Sept. 24 (8:00 am)	UT eID	
(Complete this graded homework independently, place all answers on this page, show work below, on back, or on attached pages. No credit for late work) 1. Terminology:				
(2) a) Which amino acid's side chain would have an expected pKa around 8?				
b) Name two differences in conformational characteristics between B-DNA and Z-DNA:				
•				
	of the oligopeptide: F			
3. Given the following dideoxy sequencing gel result, what is the sequence (5' \rightarrow 3') of the original				
		A T	СС	
		Q iiii is	William	
Template? (2)			481831	
		_		•
4. What is the role (2)	e of luciferase and name	of the sequencing tecl	hnique that utilizes this	protein?
5 Ciga abaraa -	solonity and affinity are	all abarastariation of m		
	polarity and affinity are one separation technique			oned to purify a
Property:	Size		Polarity	Affinity
· · · · · · · · · · · · · · · · · ·				
6. What is the percentage yield for a purification step that started with 47 mL of solution at 1.1 mg/mL with a specific activity of 356 and ended with 14 mL of solution at 2.4 mg/mL with a specific activity of 511?				
 (2) 7. Consider a "gel filtration" column that is 100 cm in length and 2.50 cm in diameter. It is packed with spherical beads that are on average 0.22 mm in diameter with a density of 1.33 g/cm³. Assume that V_o is 36% of V_{tot}. The column is calibrated with trypsin inhibitor (~21.5 kD) and β-galactosidase (~116 kD) which gave Ve /Vo values of 2.50 and 1.50, respectively. What is the best estimate of molecular mass (kD) for an unknown protein with Ve /Vo = 2.15? (M ~ kD) 				
(3)				
(1) corresponding column at pH	C, and D with MWs cong to 5.3, 7.6, 4.4, 9.6, red to 5.9 and then eluted with off the column last?	espectively, are added th an increasing salt gr	onto a CMC (carboxy	methyl cellulose)
9. (1) Which of th	he above proteins would	come off first when a	ıll are loaded on a G-20	00 column?
	on affinity tags used to pur tein is eluted with			
•				C
I hereby declare t	hat I did this work indep	pendently:		