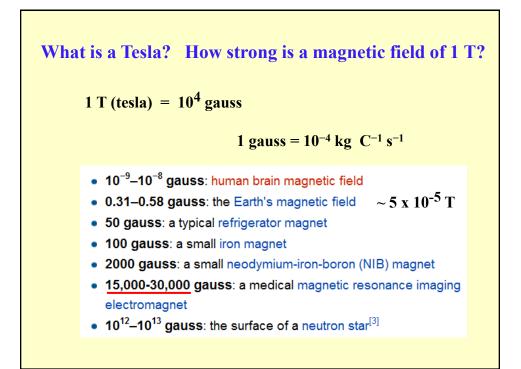
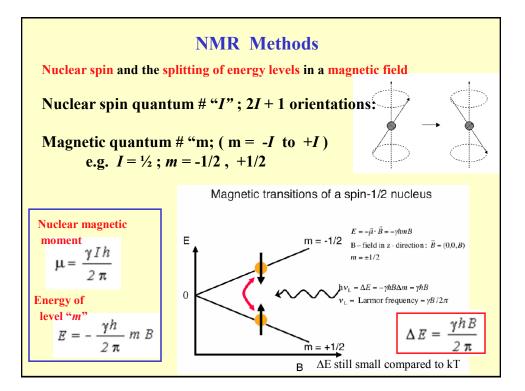


Structure Determination by Multidimensional NMR

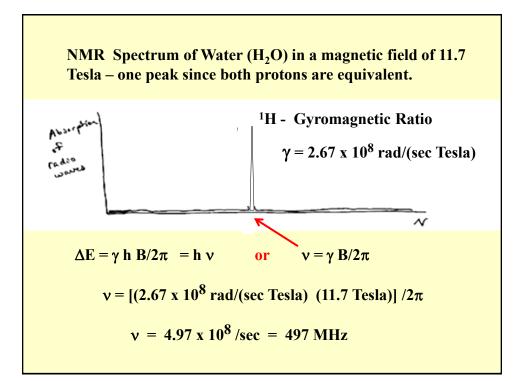
- 1. NMR Basics
 - Spin states / Energy of transitions / Boltzmann Distribution
 - What defines a "500 MHz" NMR?
 - Chemical shifts / How to interpret basic NMR spectra?
- 2. Many types of NMR experiments
 - COSY / NOESY
- 3. What are the requirements and limitations of multidimensional NMR methods?
- 4. What is the "Assignment Problem"?
- 5. How are "Assignments" made?
- 6. From peaks to secondary structure to a 3D model.
 - How is the protein "model" obtained?
- 7. Comparison of structure determination by X-ray vs. NMR.

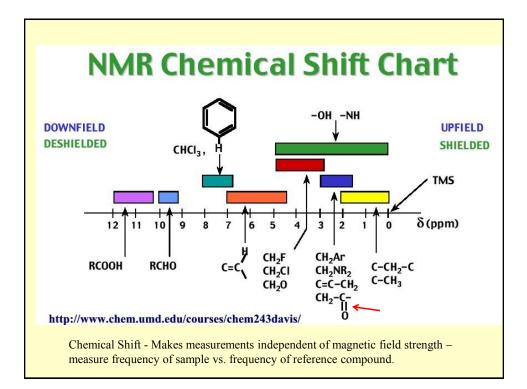
NMR Methods **Nuclear spin** (nuclear spin Quantum Number *I*) No spin: #neutrons and #protons both even - 12C, 16O Half-integer spin (1/2, 3/2, 5/2): #neutrons + #protons odd - 1H, 13C, 15N Integer spin (1, 2, 3): #neutrons and #protons both odd - 2H, 14N Spin Quantum Numbers of Common Nuclei Ŷ 12**C** 14N 16**0** 170 Element н 2H 13**C** 19F Nuclear Spin Quantum No 0 1 0 1 1/2 5/2 1/2 (1) No. of Spin 2 3 0 2 3 0 2 6 States Elements with odd mass or odd atomic number have nuclear "spin". http://www.chem.umd.edu/courses/chem243davis/

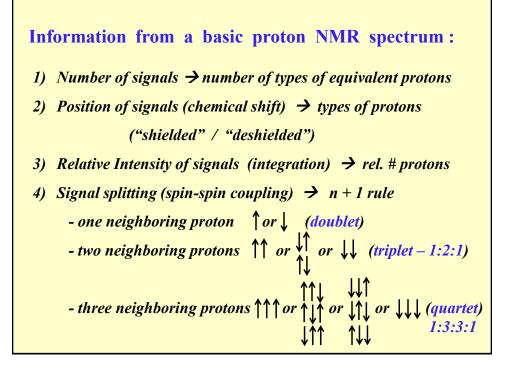


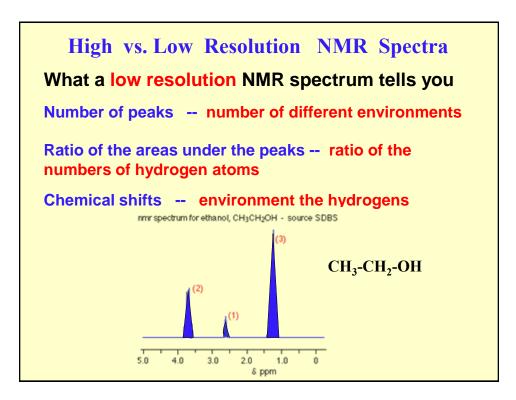

When a group of spins is placed in a magnetic field, each spin aligns in one of the two possible orientations either positive or negative. In sample, which contains a specific NMR-active nucleus, the nuclei will be distributed throughout the various spin states. The energy separation between these states is relatively small and the energy from thermal collisions is sufficient to place many nuclei into higher energy spin states. The number of nuclei in each spin state can be described by the Boltzmann distribution. The Boltzmann equation expresses the relationship between temperature and the related energy as shown below.

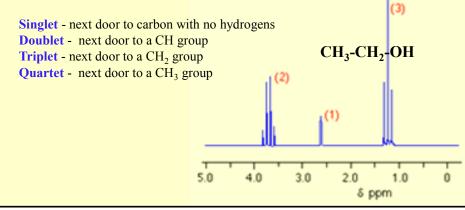
$$rac{N_{upper}}{N_{lower}} = e^{rac{-\Delta E}{kT}} = e^{rac{-ha}{kT}}$$

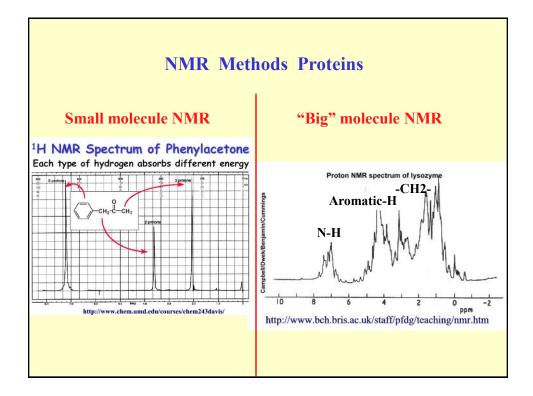

Where N_{upper} and N_{lower} represent the population of nuclei in upper and lowe energy states, E is the energy difference between the spin states, k is the Boltzmann constant (1.3805x10-23 J/Kelvin) and T is the temperature in K. At room temperature, the number of spins in the lower energy level, N lower, slightly outnumbers the number in the upper level, N upper.

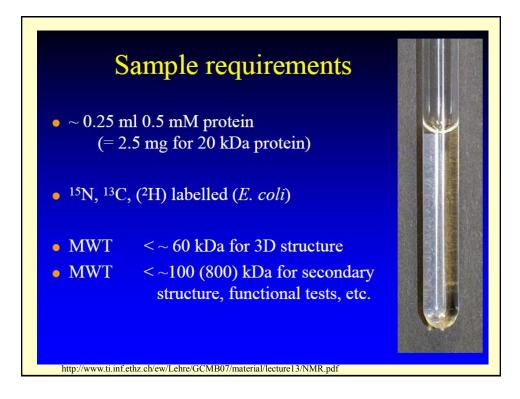

http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/NMR%3A_Theory#Distribution _of_Particles_Between_Magnetic_Quantum_States

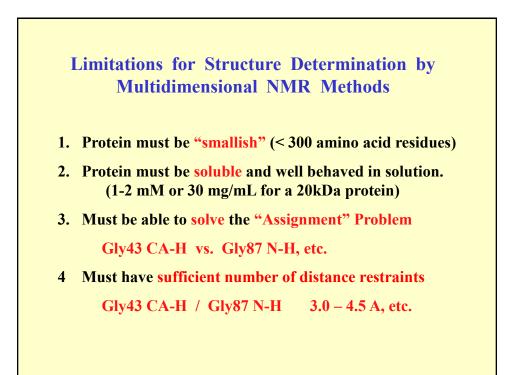




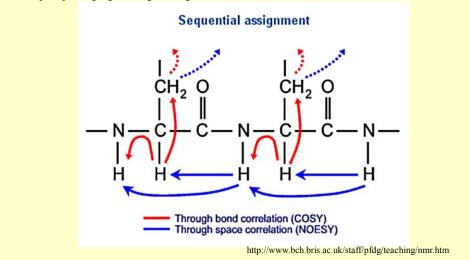





High vs. Low Resolution NMR Spectra


What a high resolution NMR spectrum tells you

In a high resolution spectrum, single peaks in the low resolution spectrum are split into clusters of peaks due to spin-spin coupling. Amount of splitting (**n+1 rule**) tells you about the number of hydrogens attached to the carbon atom *next door.*

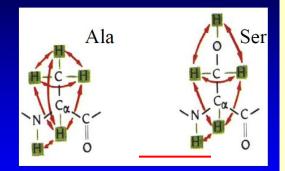


Structure Determination of Proteins in Solution

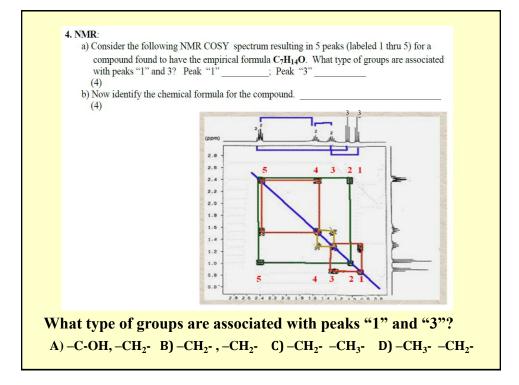
- Resonance assignment (COSY)
- Distance assignment (NOESY)
- Structure calculation

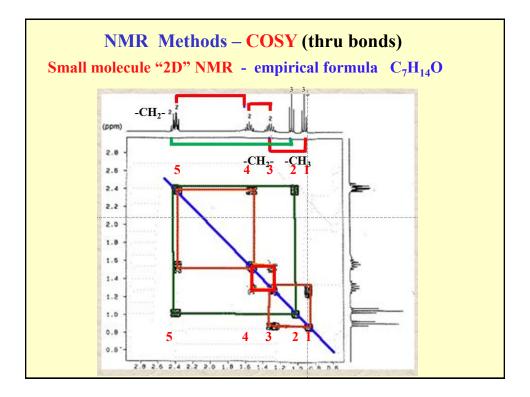
Two-dimensional **COSY** (**COrrelation SpectroscopY**) experiments allow you to **determine the connectivity** of a molecule by determining which protons are spin-spin coupled. One could accomplish the same task by a detailed analysis of spin-spin splittings, given high enough resolution.

Resonance assignment by COSY


- COSY spectra show frequency correlations between nuclei that are connected by chemical bonds
- Since the different amino acids have a different chemical structure they give rise to different patterns in COSY spectra
- This information can be used to determine the frequencies of all nuclei in the molecule. This process is called resonance assignment
- Modern assignment techniques also use information from COSY experiments with ¹³C and ¹⁵N nuclei

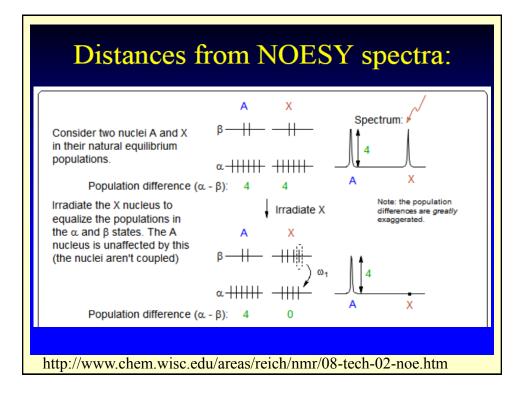
http://www.ti.inf.ethz.ch/ew/Lehre/GCMB07/material/lecture13/NMR.pdf

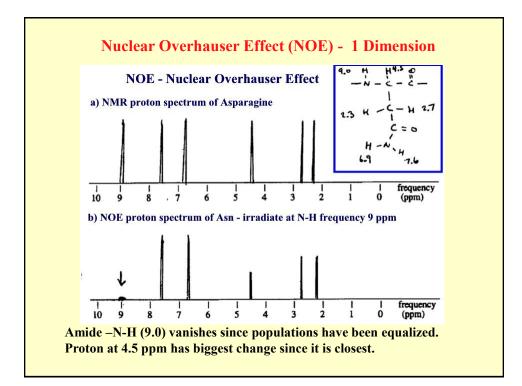

COSY (Correlation Spectroscopy)

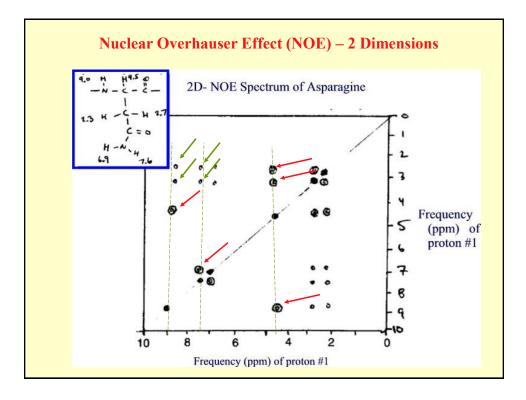

Two-dimensional COSY NMR experiments give correlation signals that correspond to pairs of hydrogen atoms which are connected through chemical bonds.

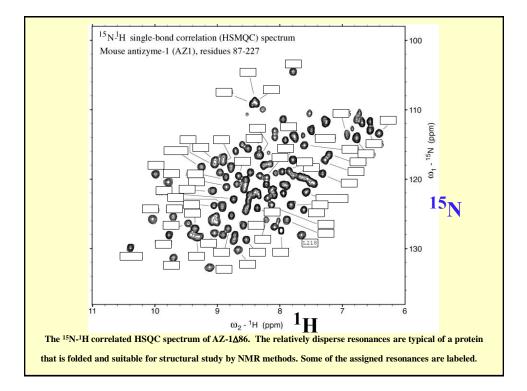
Typical COSY correlations are observable for "distances" of up to three chemical bonds.

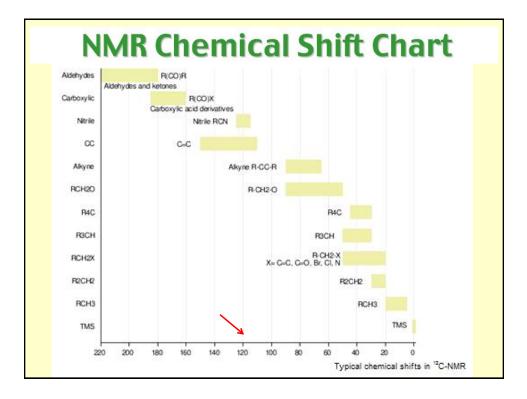
COSY correlations between covalently bonded hydrogen atoms

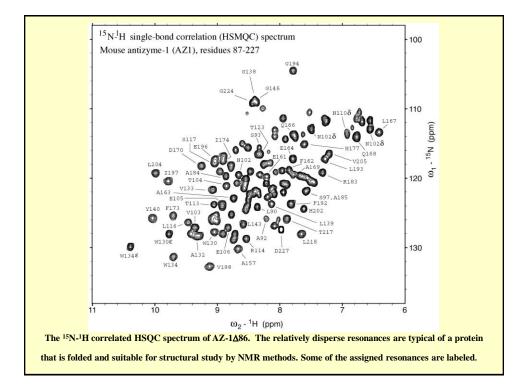

NOESY is a acronym for Nuclear Overhauser Effect Spectroscopy. NOE is the perturbation of the magnetization of one spin due to dipolar coupling with another spin. Since this interaction is detected through space the NOESY experiment provides important information on inter-nuclear distances.

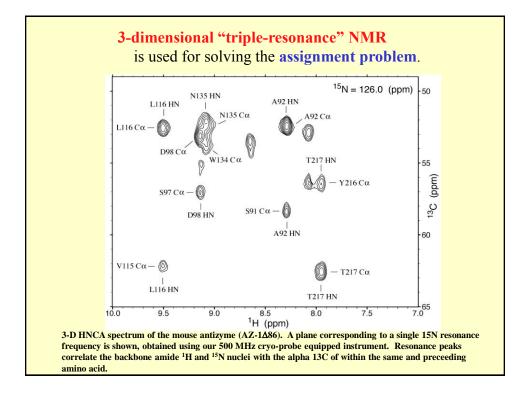

NOE = the change in the intensity of the NMR signal of one nucleus when the sample is irradiated with radiowaves at the NMR absorption frequency of another nearby nucleus.

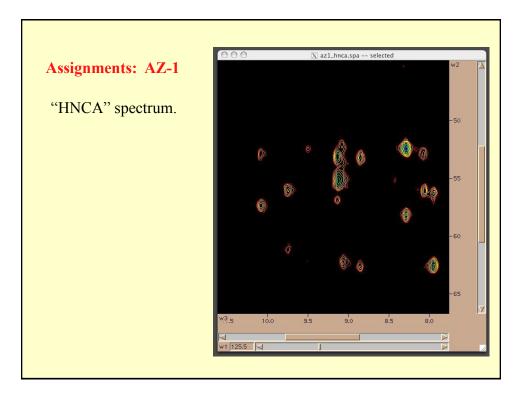

The NOE depends on the distance between nuclei.

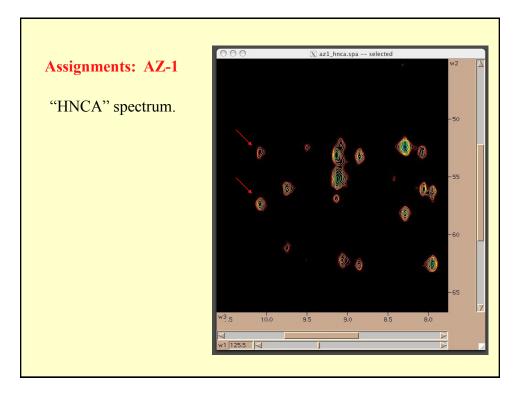

In general,

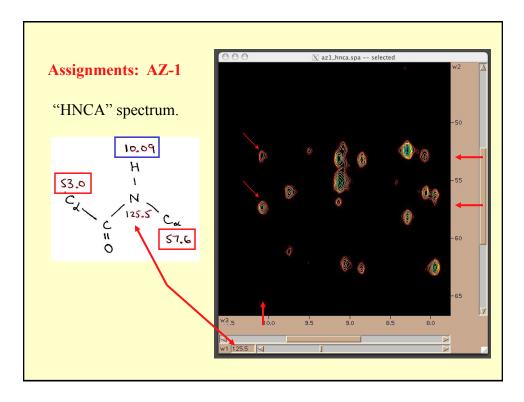

¹H to ¹H distance = 3 Å there is a large NOE ¹H to ¹H distance = 4 Å there is a medium NOE ¹H to ¹H distance = 6 Å there is a small NOE

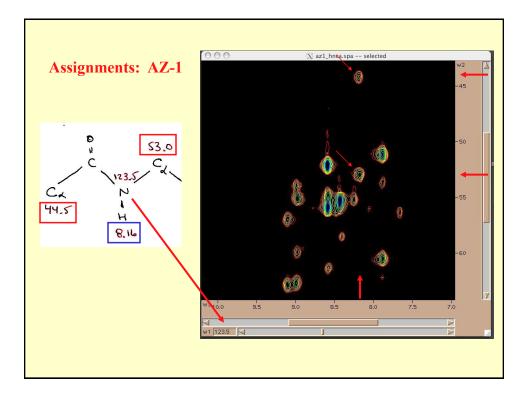


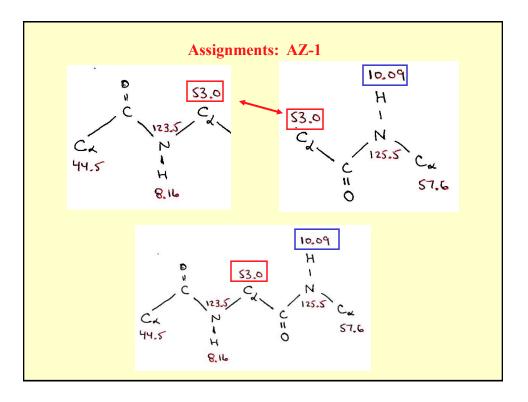


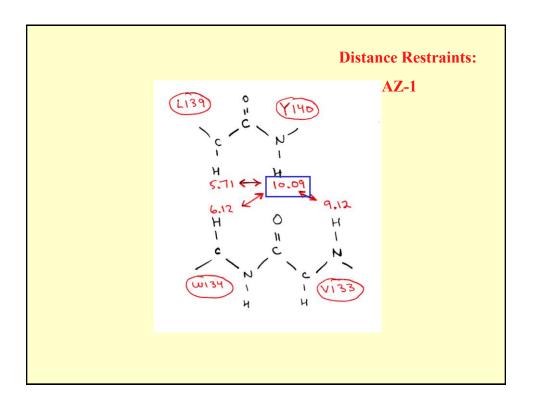


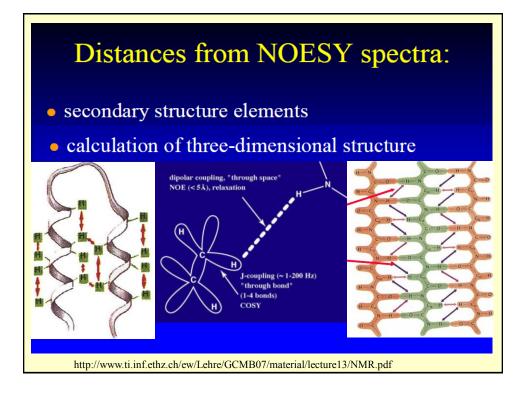

esidue	MU	~ 11	βн	Others				
Residue	NH	an	рн	Uners	Residue	αc	βc	Others of Distinction
Gly	8.40	3.97		·				
Ala	8.25	4.35	1.39		Gly	45	-	
Val	8.44	4.18	2.13	0.97,0.94(CH3)	Ala	53	18	
Ile	8.20	4.23	1.90	21.48,1.10 (CH2), 0.95 (7 CH3), 0.89 (6 CH3)	Val	60	33	20 (CH3)
Leu	8.42	4.38	1.65,1.65	1.65 (7 CH), 0.94,0.90(8 CH3)	lie	58	38	18 (γ CH3), 14 (δ CH3)
Pro	-	4.44	2.28,2.02	2.03 (7 CH2), 3.68.3.65 (6 CH2)	Leu	53	40	25 (б СНЗ)
Ser	8.38	4.50	3.88		Pro	60	30	50 (8 CH2)
Thr	8.24	4.35	4.22	1.23 (7 CH3)	Ser	58	65	
Asp	8.41	4.76	2.84,2.75		Thr	62	70	18 (7 CH3)
Glu	8.37	4.29	2.09,1.97	2 31,2 28 (7 CH2)	Asp	55	35	
Lys	8.41	4.36	1.85,1.76	1.45 (γ CH2), 1.70 (δ CH2), 3.02 (ε CH2), 7.53 (γ NH3)	Glu	55	28	
	0.07	4.38	1 00 1 70	1.70 () CH2), 3.32 (6 CH2), 7.17,6,62 (NH)	Lys	53	32	40 (€ CH2)
Arg	8.27	4.38	1.89,1.79	1.70 (7 CH2), 3.32 (0 CH2), 7.17,0,02 (NH)	Arg	55	30	42 (S CH2)
Asn	8.75	4.75	2.83,2.75	7.59,6.91 (δ NH2)	Asn	55	35	
Gin	8.41	4.73	2.13,2.01	2.38 (7 CH2), 6.87, 7.59 (7 NH2)	Gin	55	32	
Met	8.42	4.52	2.15,2.01	2.64(? CH2), 2.13 (€ CH3)	Met	55	35	16 (E CH3)
C	0.21	4.69	3 28,2 96		Cys	55	35(ex)/25(red)	
Cys Trp	_	4.09		7.1-7.5 (aromatic), 10.22 (NH)	Trp	55	28	90-110 (aromatic)
Phe				7.3-7.4 (aromatic)	Phe	55	35	115-125 (aromatic)
Tyr	8.18			6.85-7.15 (aromatic)	Tyr	55	35	95(EC), 125(SC)
His	-	4.63		7.148.12 (aromatic)	lyi	-		
7115	8.41	4.03	3.20,3.20	/.145.14 (aromauć)	His	55	28	100 (8 2), 130 (€ 1)

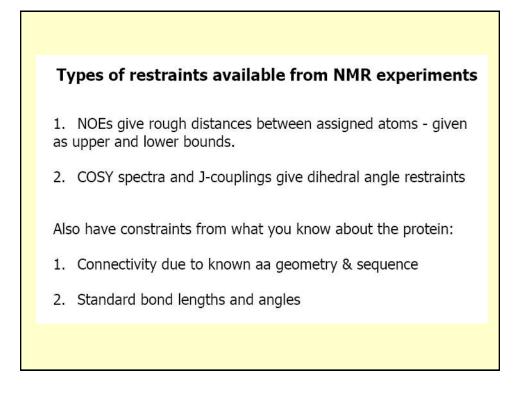

0	0	0					az1_	80_1	36.xls				
0	A	B	C	D	E	F	G	H	I	J	K	L	М
1	no	type	HN	N	CA	CA-1	CB	CB-1	CO	CO-1	HA	HB	HG
2	87	D											
3	88	H											
4	89	S			58.6		63.7		173.9		4.42	2 8	
5	90	L	8.42	124.2	55.2	58.8	42.3	63.6	176.7	174.1	4.44	1.67	1.82,1.57
6	91	S	8.24	116.1	58.1	55.1	63.8	42.0	173.3	176.7	4.48	3.92	10
7	92	A	8.27	125.6	52.4	58.2	19.4	63.8	176.6	173.3	4.48	1.45	
8	93	S	8.39	115.2	57.8	52.3	64.2	19.4	172.8	176.7	4.60	3.94	
9	94	I	8.62	124.3	61.1	57.8	37.6	64.1	175.0	173.0	4.22		
10	95	L	8.70	130.2	55.9	61.1	43.9		175.9			1.62	
11	96	Y	7.82	119.1	58.1	55.9	42.5	43.9	171.9	175.9	4.62		
12	97	S	7.62	121.6	57.0	58.0	65.3	42.4	171.4	171.9	4.99	3.77,3.66	
13	98	D	9.14	126.0	53.1	57.0	40.8		174.8				
14	99	E	8.76	115.8	59.1	53.3	29.0					2.33,2.06	
15	100	R	8.82	118.1	56.8	59.0	32.4	29.0	174.8	176.3	4.66		
16	101	L	8.60	121.5	53.9	56.4	46.7	32.6	174.3	174.8	5.32	1.66,1.60	1.26
17	102	N	8.70	119.6	53.7	53.9	42.0	46.5	173.5	174.2	5.20	2.75	
18	103	Ţ	9.41	127.0	61.3	53.8	33.4	42.0	174.2	173.5	5.11	2.05	
19	104	T	8.89	121.1	60.0	61.3	71.4	33.4	172.0	174.2	5.13		1.17
20	105	E	8.96	123.7	55.0	60.0	31.9		175.2				
21	106	E	8.87	127.1	54.0	55.0	29.7	32.0		175.4		1.85	
22	107	P	no		56.8		32.3						
23	108	T	7.94	114.4		56.8	71.0	32.5	172.3	176.0	4 66	4.04	1.12
24	109	ŝ	8.59	123.8		61.6	44.0	70.9	174.0	172.5		1.01	1.12
25	110	N	0.05	120.0	53.1	01.0	39.3			172.0	1.01		
26	111	D	8.47	119.8	55.1	53.0	00.0	39.3		173.9	4 51	2.76	
27	112	ĸ			56.9		28.6		173.5		5.19	2.10	
28	113	T	9.09	123.6	62.9	56.9		28.6	173.3			4.14	1.16
29	114	R	8.58	128.8	55.1	62.9		69.1	1.0.0			1.68, 1.80	1.10
30	115		9.05	125.2	62.3	54.8	33.2		174.0			2.05	1.03,0.98
31	116	L	9.50	126.4	52.7	62.3	44.9		175.3			1.8	1.00,0.00
32	117	S	9.08	117.8	57.1	55.0	63.1	00.2				3.85, 3.72	
33	118		9.38	128.0	61.0	57.1		63.1	1.0.0	173.7		2.12	
34	119		8.95	127.9	54.8		30.9					1.95, 2.12	

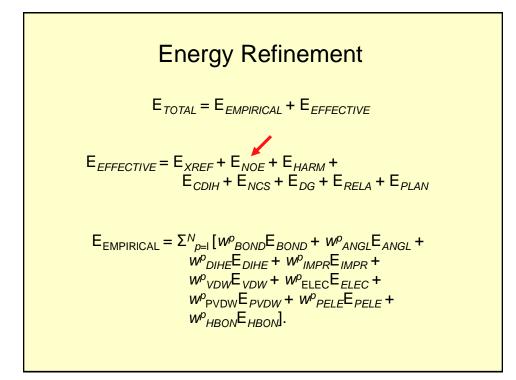


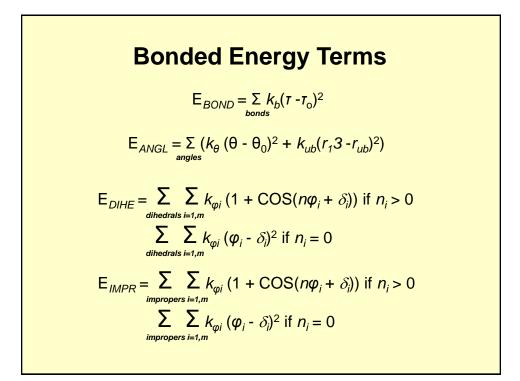


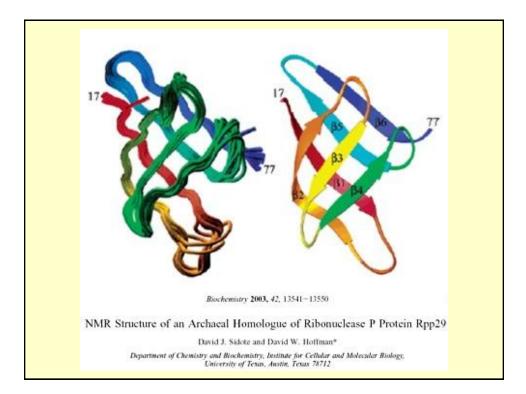


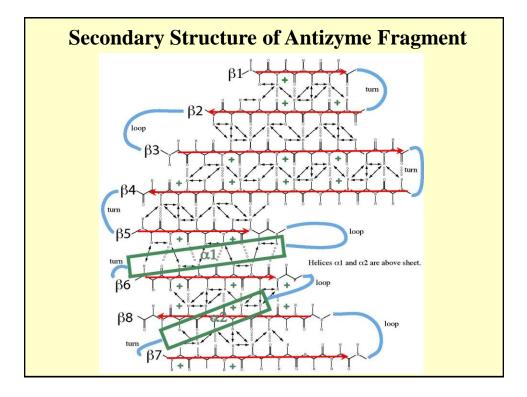


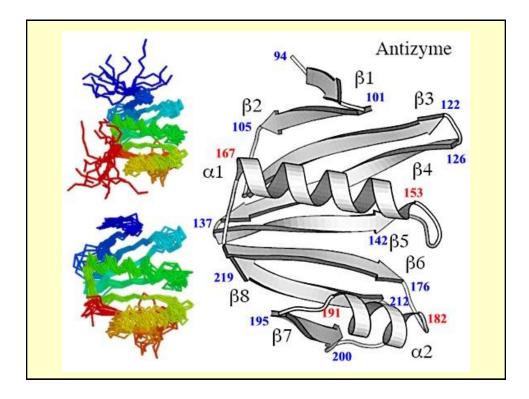


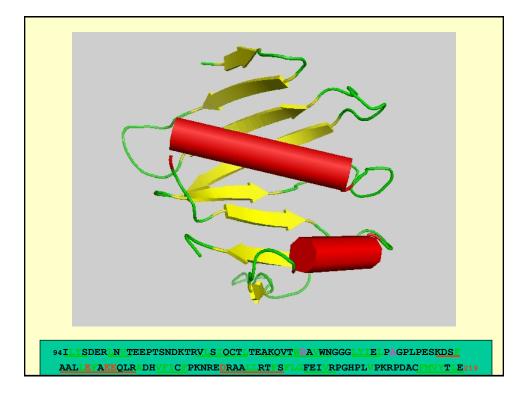




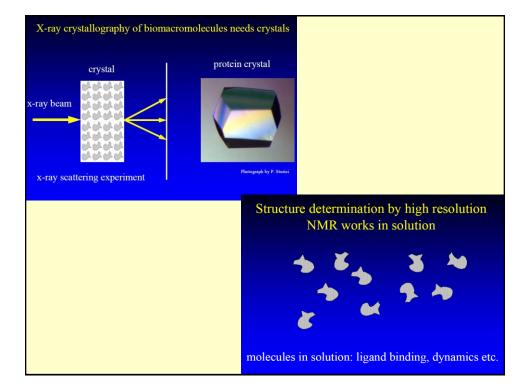


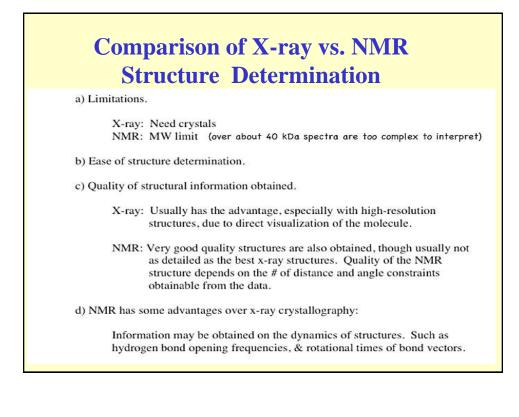






intraresidue NOEs	215
sequential NOEs (residue <i>i</i> to $i + 1$)	215
medium-range NOEs (residue <i>i</i> to $i + 1$)	18
long-range NOEs	143
dihederal angle restraints	70
hydrogen bond restraints	27
total structural restraints	651
no, of unique starting structures for	10
simulated annealing	10
no. of simulated annealing runs, differing in	200
initial trajectories	
rmsd for backbone atoms (residues 17-77)	0.87 Å
rmsd for side chain atoms (residues 17-77)	1.78 Å
av no. of NOE violations > 0.2 Å	3.2 ± 1.0
(per structure)	
av no. of NOE violations > 0.5 Å	0
(per structure)	
residues in most favored regions of	$71.2 \pm 2.6\%$
the Ramachandran plot	
residues in additionally allowed regions of	$21.2 \pm 4.6\%$
the Ramachandran plot	
residues in generously allowed regions of	$5.8 \pm 2.7\%$
the Ramachandran plot	
residues in disallowed regions of	$1.9 \pm 0.9\%$
the Ramachandran plot	
rmsd for covalent bonds	0.0034 ± 0.0001
rmsd for covalent angles	0.511 ± 0.015
rmsd for improper angles	0.581 ± 0.016





Summary: How are NMR structures solved? **Solution phase technique** - protein at mM concentration in a buffer. Currently limited to proteins \leq 30-50 kDa. 1. Measure resonant frequencies of ¹H, ¹³C, ¹⁵N atoms in a 2. magnetic field. 1D, 2D, 3D NMR Assign peaks observed in the spectrum to individual amino 3. acids. COSY 4. **Measure distances** between different residues < 6Å apart to get restraints. Need many restraints per residue. **NOESY** 5. Build structures consistent with the experimental distance restraints and principles of sterochemistry. Simulated Annealing 6. Yields a set of structures consistent with the data. Blur-o-gram

