

Structure Determination by Multidimensional NMR

1. NMR Basics

- Spin states / Energy of transitions / Boltzmann Distribution
- What defines a " 500 MHz " NMR?
- Chemical shifts / How to interpret basic NMR spectra?

2. Many types of NMR experiments

- COSY / NOESY

3. What are the requirements and limitations of multidimensional NMR methods?
4. What is the "Assignment Problem"?
5. How are "Assignments" made?
6. From peaks to secondary structure to a 3D model.

- How is the protein "model" obtained?

7. Comparison of structure determination by X-ray vs. NMR.

NMR Methods

Nuclear spin (nuclear spin Quantum Number I)

No spin: \#neutrons and \#protons both even - 12C, 160
Half-integer spin (1/2, 3/2, 5/2): \#neutrons + \#protons odd - 1H, 13C, 15N Integer spin (1, 2, 3): \#neutrons and \#protons both odd - $2 \mathrm{H}, 14 \mathrm{~N}$
Spin Quantum Numbers of Common Nuclei

Element	${ }^{1}$ H	2 H	${ }^{12}$ C	${ }^{13} \mathrm{C}$	14 N	160	170	19 F
Nuclear Spin Quantum No (I)		1	0	$1 / 2$	1	0	$5 / 2$	$1 / 2$
No. of Spin States	2	3	0	2	3	0	6	2

Elements with odd mass or odd atomic number have nuclear "spin".

H NMR - Physical Methods

Larmor equation:
$v=\frac{\gamma B_{0}}{2 \pi}$
where:
v is the linear precessional frequency
B_{0} is the magnetic field strength of the magnet
γ is the gyromagnetic ratio
Energy absorbed during the resonance phenomena:

$\Delta \mathrm{E}=\frac{\gamma \mathrm{h} B_{0}}{2 \pi}=h v$
where:
h is Planck's constant

When a group of spins is placed in a magnetic field, each spin aligns in one of the two possible orientations either positive or negative. In sample, which contains a specific NMR-active nucleus, the nuclei will be distributed throughout the various spin states. The energy separation between these states is relatively small and the energy from thermal collisions is sufficient to place many nuclei into higher energy spin states. The number of nuclei in each spin state can be described by the Boltzmann distribution. The Boltzmann equation expresses the relationship between temperature and the related energy as shown below.

$$
\frac{N_{\text {upper }}}{N_{\text {lower }}}=e^{\frac{-\Delta E}{k T}}=e^{\frac{-h \nu}{k T}}
$$

Where $N_{\text {upper }}$ and $N_{\text {lower }}$ represent the population of nuclei in upper and lowe energy states, E is the energy difference between the spin states, k is the Boltzmann constant ($1.3805 \times 10-23 \mathrm{~J} /$ Kelvin) and T is the temperature in K. At room temperature, the number of spins in the lower energy level, $\mathrm{N}_{\text {lower }}$, slightly outnumbers the number in the upper level, $\mathrm{N}_{\text {upper }}$.
http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/NMR\%3A_Theory\#Distribution of Particles Between Magnetic Quantum States

What is a Tesla? How strong is a magnetic field of 1 T?

$1 \mathrm{~T}\left(\right.$ tesla) $=10^{4}$ gauss

$$
1 \text { gauss }=10^{-4} \mathrm{~kg} \mathrm{C}^{-1} \mathrm{~s}^{-1}
$$

- $\mathbf{1 0}^{-9}-\mathbf{1 0} \mathbf{0}^{-8}$ gauss: human brain magnetic field
- 0.31-0.58 gauss: the Earth's magnetic field $\sim 5 \times 10^{-5} \mathrm{~T}$
- 50 gauss: a typical refrigerator magnet
- 100 gauss: a small iron magnet
- 2000 gauss: a small neodymium-iron-boron (NIB) magnet
- 15,000-30,000 gauss: a medical magnetic resonance imaging electromagnet
- $10^{12}-10^{13}$ gauss: the surface of a neutron star ${ }^{[3]}$

NMR Methods

Nuclear spin and the splitting of energy levels in a magnetic field

Nuclear spin quantum \# "I"; $2 I+1$ orientations:

Magnetic quantum \# "m; ($m=-I$ to $+I$)

$$
\text { e.g. } I=1 / 2 ; m=-1 / 2,+1 / 2
$$

Magnetic transitions of a spin-1/2 nucleus

Nuclear magnetic

moment

$$
\mu=\frac{\gamma I h}{2 \pi}
$$

Energy of
level " m "

$$
E=-\frac{y h}{2 \pi} m B
$$

B $\Delta \mathrm{E}$ still small compared to kT

ΔE still small compared to kT

$\Delta E=\frac{\gamma h B}{2 \pi}=\mathbf{h} \mathbf{v}$
$\Delta E=h \nu$ with $v \sim 500 \mathrm{MHz}$
$=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\left(5.0 \times 10^{8} / \mathrm{s}\right)$ $=3.31 \times 10^{-25} \mathrm{~J}$

Boltzmann constant: $\mathbf{k}=\mathbf{R} / \mathbf{T}$ $P V=n R T=N k T$

$$
\begin{aligned}
k T & =\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(298 \mathrm{~K}) \\
& =4.11 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

Boltzmann distribution: the probability of a system being in a state with energy E is proportional to $\mathbf{e}^{-\Delta \mathbf{E} / \mathbf{k T}}$

$$
\begin{array}{|l}
\frac{\mathrm{n}+}{\mathrm{n}-}=\mathbf{e}^{-\Delta \mathrm{E} / \mathrm{kT}} \\
\\
\\
\\
=\exp \left(-3.31 \times 10^{-25} \mathrm{~J} / 4.11 \times 10^{-21} \mathrm{~J}\right. \\
\end{array}
$$

for 100,992 nuclei $\Longleftrightarrow \frac{\mathrm{n}+}{\mathrm{n}-}=\frac{99,992}{100,000}$

NMR Spectrum of Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in a magnetic field of 11.7
Tesla - one peak since both protons are equivalent.

$$
\begin{aligned}
& \text { Aworesiny }{ }^{1} \mathrm{H} \text { - Gyromagnetic Ratio } \\
& \gamma=2.67 \times 10^{8} \mathrm{rad} /(\mathrm{sec} \text { Tesla) } \\
& \Delta E=\gamma h B / 2 \pi=h v \quad \text { or } \quad v=\gamma B / 2 \pi \\
& v=\left[\left(2.67 \times 10^{8} \mathrm{rad} /(\sec \text { Tesla) (11.7 Tesla) }] / 2 \pi\right.\right. \\
& v=4.97 \times 10^{8} / \mathrm{sec}=497 \mathrm{MHz}
\end{aligned}
$$

Information from a basic proton NMR spectrum :

1) Number of signals \rightarrow number of types of equivalent protons
2) Position of signals (chemical shift) \rightarrow types of protons ("shielded"/"deshielded")
3) Relative Intensity of signals (integration) \rightarrow rel. \# protons
4) Signal splitting (spin-spin coupling) $\boldsymbol{\rightarrow} \boldsymbol{n}+1$ rule - one neighboring proton \uparrow or \downarrow (doublet) -two neighboring protons $\uparrow \uparrow$ or $\stackrel{\downarrow}{\uparrow \downarrow \text { or } \downarrow \downarrow \text { (triplet-1:2:1) }}$ - three neighboring protons $\uparrow \uparrow \uparrow$ or $\uparrow \uparrow \downarrow \downarrow$ or $\quad \downarrow \downarrow \uparrow \downarrow$ or $\downarrow \downarrow \downarrow$ (quartet) $\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow$ 1:3:3:1

High vs. Low Resolution NMR Spectra What a low resolution NMR spectrum tells you Number of peaks -- number of different environments
 Ratio of the areas under the peaks -- ratio of the numbers of hydrogen atoms
 Chemical shifts -- environment the hydrogens
 nmr spectrum for ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ - source SDBS

 $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$

High vs. Low Resolution NMR Spectra

What a high resolution NMR spectrum tells you

In a high resolution spectrum, single peaks in the low resolution spectrum are split into clusters of peaks due to spin-spin coupling. Amount of splitting ($\mathbf{n}+\mathbf{1}$ rule) tells you about the number of hydrogens attached to the carbon atom next door.

NMR Methods Proteins

Small molecule NMR
${ }^{1}$ H NMR Spectrum of Phenylacetone Each type of hydrogen absorbs different energy

"Big" molecule NMR

Sample requirements

- $\sim 0.25 \mathrm{ml} 0.5 \mathrm{mM}$ protein ($=2.5 \mathrm{mg}$ for 20 kDa protein)
- ${ }^{15} \mathrm{~N},{ }^{13} \mathrm{C},\left({ }^{2} \mathrm{H}\right)$ labelled (E. coli)
- MWT $<\sim 60 \mathrm{kDa}$ for 3D structure
- MWT <~100 (800) kDa for secondary structure, functional tests, etc.
http://www.ti.inf.ethz.ch/ew/Lehre/GCMB07/material/lecture13/NMR.pdf

Limitations for Structure Determination by Multidimensional NMR Methods

1. Protein must be "smallish" (<300 amino acid residues)
2. Protein must be soluble and well behaved in solution. (1-2 mM or $30 \mathrm{mg} / \mathrm{mL}$ for a 20kDa protein)
3. Must be able to solve the "Assignment" Problem Gly43 CA-H vs. Gly87 N-H, etc.

4 Must have sufficient number of distance restraints

$$
\text { Gly } 43 \text { CA-H / Gly87 N-H } 3.0-4.5 \mathrm{~A} \text {, etc. }
$$

Structure Determination of Proteins in Solution

- Resonance assignment (COSY)
- Distance assignment (NOESY)
- Structure calculation

NMR Methods - COSY vs. NOESY

Two-dimensional COSY (COrrelation SpectroscopY) experiments allow you to determine the connectivity of a molecule by determining which protons are spinspin coupled. One could accomplish the same task by a detailed analysis of spinspin splittings, given high enough resolution.

Sequential assignment

Resonance assignment by COSY

- COSY spectra show frequency correlations between nuclei that are connected by chemical bonds
- Since the different amino acids have a different chemical structure they give rise to different patterns in COSY spectra
- This information can be used to determine the frequencies of all nuclei in the molecule. This process is called resonance assignment
- Modern assignment techniques also use information from COSY experiments with ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ nuclei
http://www.ti.inf.ethz.ch/ew/Lehre/GCMB07/material/lecture13/NMR.pdf

COSY (Correlation Spectroscopy)

Two-dimensional COSY NMR experiments give correlation signals that correspond to pairs of hydrogen atoms which are connected through chemical bonds.

Typical COSY correlations are observable for "distances" of up to three chemical bonds.

COSY correlations between covalently bonded hydrogen atoms

4. NMR:

a) Consider the following NMR COSY spectrum resulting in 5 peaks (labeled 1 thru 5) for a compound found to have the empirical formula $\mathrm{C}_{7} \mathbf{H}_{14} \mathbf{O}$. What type of groups are associated with peaks " 1 " and 3? Peak " 1 " \qquad Peak "3" \qquad (4)
b) Now identify the chemical formula for the compound.
(4)

What type of groups are associated with peaks " 1 " and " 3 "?
A) $\left.-\mathbf{C - O H},-\mathrm{CH}_{2}-\mathrm{B}\right)-\mathrm{CH}_{2-},-\mathrm{CH}_{2}-$
C) $-\mathrm{CH}_{2}--\mathrm{CH}_{3}-$
D) $-\mathrm{CH}_{3}--\mathrm{CH}_{2}-$

NMR Methods - COSY (thru bonds) Small molecule "2D" NMR - empirical formula $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$

NOESY is a acronym for Nuclear Overhauser Effect

 Spectroscopy. NOE is the perturbation of the magnetization of one spin due to dipolar coupling with another spin. Since this interaction is detected through space the NOESY experiment provides important information on inter-nuclear distances.NOE = the change in the intensity of the NMR signal of one nucleus when the sample is irradiated with radiowaves at the NMR absorption frequency of another nearby nucleus.

The NOE depends on the distance between nuclei.
In general,
${ }^{1} \mathrm{H}$ to ${ }^{1} \mathrm{H}$ distance $=3 \AA$ there is a large NOE
${ }^{1} \mathrm{H}$ to ${ }^{1} \mathrm{H}$ distance $=4 \AA$ there is a medium NOE
${ }^{1} \mathrm{H}$ to ${ }^{1} \mathrm{H}$ distance $=\underline{6 \AA}$ there is a small NOE

Distances from NOESY spectra:

Consider two nuclei A and X in their natural equilibrium populations.

Population difference ($\alpha-\beta$):
Irradiate the X nucleus to equalize the populations in the α and β states. The A nucleus is unaffected by this (the nuclei aren't coupled)

4

Population difference $(\alpha-\beta)$: 4
http://www.chem.wisc.edu/areas/reich/nmr/08-tech-02-noe.htm

Nuclear Overhauser Effect (NOE) - 1 Dimension

b) NOE proton spectrum of Asn - irradiate at $\mathrm{N}-\mathrm{H}$ frequency 9 ppm

Amide - N - H (9.0) vanishes since populations have been equalized. Proton at 4.5 ppm has biggest change since it is closest.

The ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ correlated HSQC spectrum of $\mathrm{AZ}-1 \Delta 86$. The relatively disperse resonances are typical of a protein that is folded and suitable for structural study by NMR methods. Some of the assigned resonances are labeled.

NMR Chemical Shift Chart

(9)00							az1_80_136.xis						
∞	A	B	C	D	E	F	G	H	I	J	K	L	M
1	no	type	FRI	N	CA	$\mathrm{CA}-1$	CB	CB-1	CO	$\mathrm{CO}-1$	HA	HB	HG
2	87	D											
3	88	H											
4	89	S			58.6		63.7		173.9		4.42		
5	90	L	8.42	124.2	55.2	58.8	42.3	63.6	176.7	174.1	4.44	1.67	1.82,1.57
6	91	S	8.24	116.1	58.1	55.1	63.8	42.0	173.3	176.7	4.48	3.92	
7	92	A	8.27	125.6	52.4	58.2	19.4	63.8	176.6	173.3	4.48	1.45	
8	93	S	8.39	115.2	57.8	52.3	64.2	19.4	172.8	176.7	4.60	3.94	
9	94	I	8.62	124.3	61.1	57.8	37.6	64.1	175.0	173.0	4.22		
10	95	L	8.70	130.2	55.9	61.1	43.9	37.6	175.9	175.0	4.55	1.62	
11	96	Y	7.82	119.1	58.1	55.9	42.5	43.9	171.9	175.9	4.62		
12	97	S	7.62	121.6	57.0	58.0	65.3	42.4	171.4	171.9	4.99	$3.77,3.66$	
13	98	D	9.14	126.0	53.1	57.0	40.8	65.2	174.8	171.3	4.48		
14	99	E	8.76	115.8	59.1	53.3	29.0	40.8	176.3	174.8	4.14	$2.33,2.06$	
15	100	R	8.82	118.1	56.8	59.0	32.4	29.0	174.8	176.3	4.66		
16	101	L	8.60	121.5	53.9	56.4	46.7	32.6	174.3	174.8	5.32	1.66,1.60	1.26
17	102	N	8.70	119.6	53.7	53.9	42.0	46.5	173.5	174.2	5.20	2.75	
18	103	V	9.41	127.0	61.3	53.8	33.4	42.0	174.2	173.5	5.11	2.05	
19	104	T	8.89	121.1	60.0	61.3	71.4	33.4	172.0	174.2	5.13		1.17
20	105	E	8.96	123.7	55.0	60.0	31.9	71.6	175.2	172.2	5.21		
21	106	E	8.87	127.1	54.0	55.0	29.7	32.0		175.4	4.78	1.85	
22	107	P	no		56.8		32.3						
23	108	T	7.94	114.4	61.4	56.8	71.0	32.5	172.3	176.0	4.66	4.04	1.12
24	109	S	8.59	123.8	55.0	61.6		70.9		172.5	4.31		
25	110	N			53.1		39.3						
26	111	D	8.47	119.8	55.1	53.0		39.3		173.9	4.51	2.76	
27	112	K			56.9		28.6		173.5		5.19		
28	113	T	9.09	123.6	62.9	56.9	69.1	28.6	173.3	173.5	4.35	4.14	1.16
29	114	R	8.58	128.8	55.1	62.9		69.1		173.3	4.56	$1.68,1.80$	
30	115	V	9.05	125.2	62.3	54.8	33.2	32.6	174.0	174.0	4.79	2.05	1.03, 0.98
31	116	L	9.50	126.4	52.7	62.3	44.9	33.2	175.3	173.9	5.45	1.8	
32	117	S	9.08	117.8	57.1		63.1		173.6	175.4	5.07	$3.85,3.72$	
33	118	I	9.38	128.0	61.0	57.1	39.3	63.1		173.7	4.41	2.12	
34	119	Q	8.95	127.9	54.8	61.1	30.9	39.3		172.7	5.01	$1.95,2.12$	

3-dimensional "triple-resonance" NMR is used for solving the assignment problem.

3-D HNCA spectrum of the mouse antizyme (AZ-1 $\Delta 86$). A plane corresponding to a single $\mathbf{1 5 N}$ resonance frequency is shown, obtained using our 500 MHz cryo-probe equipped instrument. Resonance peaks correlate the backbone amide ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ nuclei with the alpha 13 C of within the same and preceeding amino acid.

Distance Restraints:

Distances from NOESY spectra:

- secondary structure elements
- calculation of three-dimensional structure

http://www.ti.inf.ethz.ch/ew/Lehre/GCMB07/material/lecture13/NMR.pdf

Types of restraints available from NMR experiments

1. NOEs give rough distances between assigned atoms - given as upper and lower bounds.
2. COSY spectra and J-couplings give dihedral angle restraints

Also have constraints from what you know about the protein:

1. Connectivity due to known aa geometry \& sequence
2. Standard bond lengths and angles

Energy Refinement

$$
\begin{aligned}
& \mathrm{E}_{\text {TOTAL }}=\mathrm{E}_{\text {EMPIRICAL }}+\mathrm{E}_{\text {EFFECTIVE }} \\
& \mathrm{E}_{\text {EFFECTIVE }}=\mathrm{E}_{\text {XREF }}+\mathrm{E}_{\text {NOE }}+\mathrm{E}_{\text {HARM }}+ \\
& \mathrm{E}_{C D I H}+\mathrm{E}_{N C S}+\mathrm{E}_{D G}+\mathrm{E}_{\text {RELA }}+\mathrm{E}_{P L A N} \\
& \mathrm{E}_{\text {EMPIRICAL }}=\sum^{N}{ }_{p=1}\left[w^{p}{ }_{B O N D} \mathrm{E}_{B O N D}+w^{p}{ }_{A N G L} \mathrm{E}_{A N G L}+\right. \\
& W^{p}{ }_{D H E} \mathrm{E}_{\text {DIHE }}+W^{p}{ }_{I M P R} \mathrm{E}_{\text {IMPR }}+ \\
& w^{p}{ }_{V D W} \mathrm{E}_{V D W}+w^{p}{ }_{E L E C} \mathrm{E}_{E L E C}+ \\
& w^{p}{ }^{\text {PVDW }} \mathrm{E}_{\text {PVDW }}+w^{p}{ }_{\text {PELE }} \mathrm{E}_{\text {PELE }}+ \\
& \boldsymbol{w}^{\mathrm{p}} \mathrm{HBON} \mathrm{E}_{\text {HBON }} \text {]. }
\end{aligned}
$$

Bonded Energy Terms

$$
\begin{aligned}
& \mathrm{E}_{B O N D}=\sum_{\text {bonds }} k_{b}\left(T-T_{\mathrm{o}}\right)^{2} \\
& \mathrm{E}_{A N G L}=\sum_{\text {angles }}\left(k_{\theta}\left(\theta-\theta_{0}\right)^{2}+k_{u b}\left(r_{1} 3-r_{u b}\right)^{2}\right) \\
& \mathrm{E}_{\text {DIHE }}=\sum_{\text {diheerats }: l, \mathrm{I}} \sum_{\varphi_{i}}\left(1+\operatorname{COS}\left(n \varphi_{i}+\delta_{i}\right)\right) \text { if } n_{i}>0 \\
& \sum_{\text {diheoratas }=1, m} \sum_{\varphi_{i} i}\left(\varphi_{i}-\delta_{i}\right)^{2} \text { if } n_{i}=0 \\
& \mathrm{E}_{\text {MPR }}=\sum_{\text {impopoess } B=, n} k_{\varphi_{i}}\left(1+\operatorname{COS}\left(n \varphi_{i}+\delta_{i}\right) \text { if } n_{i}>0\right. \\
& \sum_{\text {inporoest } 1=, m i} k_{\varphi i}\left(\varphi_{i}-\delta_{i}\right)^{2} \text { if } n_{i}=0
\end{aligned}
$$

Table 1: Summary of Refinement and Structural Statistics for the A. fulgides aRpp29 Protein (Residues 17-77)'

intraresidue NOEs	215
sequential NOEs (residue i to $i+1$)	178
medium-range NOEs (residue i to $i+2,3,4$)	18
long-range NOEs	143
dihederal angle restraints	70
hydrogen bond restraints	27
total structural restraints	651
no. of unique starting structures for simulated annealing	10
no. of simulated annealing runs, differing in initial trajectories	200
rmsd for backbone atoms (residues 17-77)	0.87 A
rmsd for side chain atoms (residues 17-77)	1.78 A
av no. of NOE violations $>0.2 \AA$ (per structure)	3.2 ± 1.0
av no. of NOE violations $>0.5 \AA$ (per structure)	0
residues in most favored regions of the Ramachandran plot	$71.2 \pm 2.6 \%$
residues in additionally allowed regions of the Ramachandran plot	$21.2 \pm 4.6 \%$
residues in generously allowed regions of the Ramachandran plot	$5.8 \pm 2.7 \%$
residues in disallowed regions of the Ramachandran plot	$1.9 \pm 0.9 \%$
rmsd for covalent bonds	0.0034 ± 0.0001
rmsd for covalent angles	0.511 ± 0.015
rmsd for improper angles	0.581 ± 0.016

Biachewistry 2003, 12, 1354t-13550
NMR Structure of an Archacal Homologue of Ribonuclease P Protein Rpp29
David J. Sidote and David W, Hoffman*

Uniezrsiby of Texas, daotix. Tewas 78712

Secondary Structure of Antizyme Fragment

Summary: How are NMR structures solved?

1. Solution phase technique - protein at mM concentration in a buffer. Currently limited to proteins $\leq 30-50 \mathrm{kDa}$.
2. Measure resonant frequencies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ atoms in a magnetic field.
3. Assign peaks observed in the spectrum to individual amino acids.

COSY
4. Measure distances between different residues $<6 \AA$ apart to get restraints. Need many restraints per residue.

NOESY

5. Build structures consistent with the experimental distance restraints and principles of sterochemistry.

Simulated Annealing
6. Yields a set of structures consistent with the data.
Blur-0-gram

Comparison of X-ray vs. NMR Structure Determination

a) Limitations.

X-ray: Need crystals
NMR: MW limit (over about 40 kDa spectra are too complex to interpret)
b) Ease of structure determination.
c) Quality of structural information obtained.

X-ray: Usually has the advantage, especially with high-resolution structures, due to direct visualization of the molecule.

NMR: Very good quality structures are also obtained, though usually not as detailed as the best x-ray structures. Quality of the NMR structure depends on the \# of distance and angle constraints obtainable from the data.
d) NMR has some advantages over x-ray crystallography:

Information may be obtained on the dynamics of structures. Such as hydrogen bond opening frequencies, \& rotational times of bond vectors.

