

Structure Determination by Multidimensional NMR

Questions:

- 1. NMR Basics
 - Spin states / Energy of transitions / What defines a "500 MHz" NMR?
 - Chemical shifts / How to interpret basic NMR spectra?
- 2. Many types of NMR experiments
 - COSY / NOESY
- 3. What are the requirements and limitations of multidimensional NMR methods?
- 4. What is the "Assignment Problem"?
- 5. How are "Assignments" made?
- 6. From peaks to secondary structure to a 3D model.
 - How is the protein "model" obtained?
- 7. Comparison of structure determination by X-ray vs. NMR.

NOESY is a acronym for Nuclear Overhauser Effect Spectroscopy. NOE is the perturbation of the magnetization of one spin due to dipolar coupling with another spin. Since this interaction is detected through space the NOESY experiment provides important information on inter-nuclear distances.

NOE = the change in the intensity of the NMR signal of one nucleus when the sample is irradiated with radiowaves at the NMR absorption frequency of another nearby nucleus.

The NOE depends on the distance between nuclei.

In general,

¹H to ¹H distance = 3 Å there is a large NOE

¹H to ¹H distance = 4 Å there is a medium NOE

¹H to ¹H distance = 6 Å there is a small NOE

Protein Structure Determination

The determination of protein structure by NMR methods is largely based on the ability to detect and quantify **inter-proton distances** by **measurement of the dipolar coupling between protons.**

However - In order to obtain these distances it is necessary to **assign resonance frequencies to the protons with the protein**. The latter is referred to as "assigning the spectrum", or the **assignment problem**.

The **assignments** are based largely on the detection of scalar **coupling through chemical bonds**. Analysis of spectra will give assignments of proton type (e.g. amide, alpha, beta etc.) and carbon type.

First step of NMR analysis is spectrum assignment: *(Identifying the NMR frequency of as many nuclei as possible).*

- COSY spectra show frequency correlations between nuclei that are connected by chemical bonds
- Since the different amino acids have a different chemical structure they give rise to different patterns in COSY spectra
- This information can be used to determine the frequencies of all nuclei in the molecule. This process is called resonance assignment
- Modern assignment techniques also use information from COSY experiments with ¹³C and ¹⁵N nuclei

http://www.ti.inf.ethz.ch/ew/Lehre/GCMB07/material/lecture13/NMR.pdf

		_		
Residue	NH	αΗ	β Η	Others
Gly	8.40	3.97		
Ala	8.25	4.35	1.39	
Val	8.44	4.18	2.13	0.97,0.94(CH3)
Ile	8.20	4.23	1.90	21.48,1.10 (CH2), 0.95 (Y CH3), 0.89 (S CH3)
Leu	8.42	4.38	1.65,1.65	1.65 (7 CH), 0.94,0.90(δ CH3)
Pro	•	4.44	2.28,2.02	2.03 (7 CH2), 3.68,3.65 (8 CH2)
Ser	8.38	4.50	3.88	
Thr	8.24	4.35	4.22	1.23 (7 CH3)
Asp	8.41	4.76	2.84,2.75	
Glu	8.37	4.29	2.09,1.97	2.31,2.28 (Y CH2)
Lys	8.41	4.36	1.85,1.76	1.45 (γ CH2), 1.70 (δ CH2), 3.02 (ε CH2), 7.53 (γ NH3)
Arg	8.27	4.38	1.89,1.79	1.70 (7 CH2), 3.32 (8 CH2), 7.17,6,62 (NH)
Asn	8.75	4.75	2.83,2.75	7.59,6.91 (ð NH2)
Gin	8.41	4.73	2.13,2.01	2.38 (7 CH2), 6.87,7.59 (7 NH2)
Met	8.42	4.52	2.15,2.01	2.64(7 CH2), 2.13 (€ CH3)
Cys	8.31	4.69	3.28,2.96	
Trp	8.09	4.70	3.32,3.19	7.1-7.5 (aromatic), 10.22 (NH)
Phe	8.23	4.66	3.22,2.99	7.3-7.4 (aromatic)
Tyr	8.18	4.60	3.13,2.92	6.85-7.15 (aromatic)
His	8.41	4.63	3.26,3.20	7.14-8.12 (aromatic)

Carbon Chemical Shifts

Residue	αc	βc		Others of Distinction	
Gly	45				
Ala	53	18			
Val	60	33		20 (CH3)	
Ile	58	38		18 (7 СНЗ), 14 (б СНЗ)	
Leu	53	40		25 (б СНЗ)	
Pro	60	30		50 (8 CH2)	
Ser	58	65			
Thr	62	70		18 (7 CH3)	
Asp	55	35			
Glu	55	28			
Lys	53	32		40 (E CH2)	
Arg	55	30		42 (S CH2)	
Asn	55	35			
Gin	55	32			
Met	55	35		16 (CH3)	
Cys	55	35(0	x)/25(red)		
Ттр	55	28		90-110 (aromatic)	
Phe	55	35		115-125 (aromatic)	
Tyr	55	35		95 (E C), 125 (b C)	
His	55	28		100 (δ 2), 130 (ε 1)	

intraresidue NOEs	215
sequential NOEs (residue <i>i</i> to $i + 1$)	178
medium-range NOEs (residue <i>i</i> to $i + 2, 3, 4$)	18
long-range NOFs	143
dihederal angle restraints	70
hydrogen bond restraints	27
total structural restraints	651
no, of unique starting structures for simulated annealing	10
no. of simulated annealing runs, differing in initial trajectories	200
rmsd for backbone atoms (residues 17-77)	0.87 Å
rmsd for side chain atoms (residues 17-77)	1.78 Å
av no. of NOE violations > 0.2 Å	3.2 ± 1.0
(per structure)	
av no. of NOE violations > 0.5 Å	0
(per structure)	
residues in most favored regions of	$71.2 \pm 2.6\%$
the Ramachandran plot	
residues in additionally allowed regions of	$21.2 \pm 4.6\%$
the Ramachandran plot	
residues in generously allowed regions of	$5.8 \pm 2.7\%$
the Ramachandran plot	
residues in disallowed regions of	$1.9 \pm 0.9\%$
the Ramachandran plot	
rmsd for covalent bonds	0.0034 ± 0.0001
rmsd for covalent angles	0.511 ± 0.015
rmsd for improper angles	0.581 ± 0.016

Comparison of X-ray vs. NMR Structure Determination

a) Limitations.

X-ray: Need crystals NMR: MW limit (over about 40 kDa spectra are too complex to interpret)

b) Ease of structure determination.

c) Quality of structural information obtained.

X-ray: Usually has the advantage, especially with high-resolution structures, due to direct visualization of the molecule.

NMR: Very good quality structures are also obtained, though usually not as detailed as the best x-ray structures. Quality of the NMR structure depends on the # of distance and angle constraints obtainable from the data.

d) NMR has some advantages over x-ray crystallography:

Information may be obtained on the dynamics of structures. Such as hydrogen bond opening frequencies, & rotational times of bond vectors.