Proteins: Three-Dimensional Structure

- 1. Protein Structure 5 themes
 - Primary structure determines 3D structure
 - Function of protein depends on 3D structure
 - Unique primary structure (Covalent bonds) => Unique 3D structure
 - 3D structure stabilized mostly by noncovalent interactions
 - Many proteins share common structural elements or structural "motifs"
- 2. Proteins: Biological Function depends on conformation
 - Globular Proteins: water soluble, compact, hydrophobic interior / hydrophilic surface enzymes, receptors, carriers, hormones, etc. (dynamic agents)
 Fibrous Proteins: water insoluble, structural roles, extended structure collagen, α-keratin, etc. (static agents)
- 3. Four Levels of Description of (Native) Protein Structure
 - Primary Structure: linear sequence of amino acid residues, covalent bonding including -SS-
 - Secondary Structure: local conformation of backbone, maintained by hydrogen bonds
 - Tertiary Structure: 3D structure of a subunit (one polypeptide chain) in its native state
 - Quaternary Structure: Spatial arrangement of subunits in oligomeric proteins
 - Denaturation: Partial to complete unfolding of native conformation
 - Denatured Protein: Protein that has lost its native conformation
- 4. Peptide Bonds / Peptide Conformation
 - Peptide bond: ~ double bond character; planar group, *trans* conformation (*cis* ? proline)
 - Peptide conformations: Phi / Psi (ϕ / ψ) angles; Ramachandran plots "allowed" angles $\phi = \psi = 180^{\circ}$ (fully extended, planar conformation)
 - $\phi = -57^{\circ}$; $\psi = -47^{\circ}$ (right handed α helix)
 - $\phi = -139^{\circ}$; $\psi = +135^{\circ}$ (antiparallel β sheet) $/\phi = -119^{\circ}$; $\psi = +113^{\circ}$ (parallel β sheet)
- 5. The α -helix and the β -sheets (Secondary structures)
 - α-helix : (Linus Pauling & Robert Corey 1951; Diff. α-keratin; hair)
 - pitch = 0.54 nm; rise 0.15 nm; 3.6 residues / turn; right-handed; electric dipole helix formers: helix breakers: Pro, Gly
 - helical wheels / amphipathic helices: (n, n + 4, n + 7, etc.)
 - β-sheets : (Linus Pauling & Robert Corey 1951)(silk / spider webs) antiparallel β-sheet / parallel β-sheet:
- 6. Coils / Turns / Bends / Loops (~ 50% of the residues of an average protein; surface regions)
- β -turns : tight turns (x-P-G-x) connecting two adjacent antiparallel β -strands (type I, type II)
 - Loops : 6-16 residues

- 7. Structural Motifs supersecondary structures
 - Greek key motif : $\downarrow \uparrow \downarrow \uparrow$
 - Hairpin loop: $\uparrow \downarrow$ (antiparallel); Cross-overs $\uparrow \uparrow \uparrow$
 - $\beta \alpha \beta$ loop / helix-loop-helix :
- 8. Fibrous Proteins -
 - α -keratin (hair / r.h. α helices / l.h. superhelix / hydrophobic residues)
 - Collagen (connective tissue, ~30% total mammalian protein)
 - Sequence (Gly-X-X)n and often (Gly-Pro-Hyp)n
 - Left-handed helical chains (3 residues / turn)
 - Triple helix r.-h. supercoil (~rope) \rightarrow Fibrils
 - Cross links (Lys \rightarrow Allysine / Lys + Allysine form Schiff base) = tensile strength
 - Silk Fibroin β conformation
- 9. Tertiary Structure of Globular Proteins
 - Domains : Conbination of motifs 25 to 300 a.a. / function
 - β meander antiparallel β -sheets / β sandwich
 - β barrel / α/β barrel
 - helical bundle
 - Functional units
 - Nucleotide binding domain $\beta\alpha\beta\alpha\beta$ / dinucleotide binding domain = Rossmann Fold Zn finger
- 10. Methods of Determining Protein Structure
 - X-ray Crystallography (Protein Crystallography) Resolution $<3\text{\AA}$ ($\lambda = 2\text{dsin}\theta$)
 - Crystals Diffraction Pattern Phases Electron Density map Model Refinement (1962 Mb / Kendrew ; Hb / Perutz ; 1970 ~ 6 protein structures ; 1997 ~ 6500) RASMOL (Chime / Netscape) - Ribbon representations, C α backbone, Space fill, etc.
 - NMR Spectroscopy for proteins with subunit sizes < 20 kDa (Ensemble of Structures) NOSEY (Nuclear Overhauser Effect Spectroscopy) - interproton dist. thru space <5Å COSY (Correlated Spectroscopy) - Interproton dist. thru bonds <5Å
- 11. Quaternary Structure Arrangements of subunits in "oligomers" α_4 ; α_{12} ; $(\alpha\beta)_2$; $(\alpha\beta)_6$ oligomer / (multimer / protomer) / rotational vs. dihedral symmetry
- 12. Protein Denaturation and Renaturation
 - Denaturation : Tm (melting temperature)
 - 8M Urea ; 5M quanidinium chloride ; 1% SDS
 - Renaturation : Chris Anfinsen Folding of Ribonuclease (4 disulfides)
- 13. Protein Folding and Stability

 $-\Delta G = G_{f} - G_{u} = \Delta H_{prot} + \Delta H_{solv} - T\Delta S_{prot} - T\Delta S_{solv} (largest - T\Delta S_{solv} for nonpolar R)$

- Folding as a cooperative, sequential process : Local sec. st. / Domains / Molten globules
- Molecular chaperones (GroEL, GroES / Hsp70) assist with folding / (Prions misfolding)
- Isomerases (PDI, protein disulfide isomerase; PPI, peptide prolyl cis-trans isomerase)