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ABSTRACT: The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable
functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of
the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that
provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional
assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase,
haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing
the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in
vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific
community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional
assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination,
computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the
community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the
strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5)
dissemination of data via the EFI’s Website, http://enzymefunction.org. The realization of multidisciplinary strategies for
functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and
evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and
pharmaceutical efforts.

As genome sequencing has become routine, the number of
protein sequences in the databases has expanded

exponentially. In early October 2011, the UniProtKB/TrEMBL
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database contained 16886838 entries. This abundance of
protein sequences is a boon for biology and biomedical science,
because understanding the genomic capabilities of an organism
will allow its metabolism and physiology to be defined and
targets for chemotherapeutic or antibiotic intervention to be
identified. Furthermore, understanding the functions of
proteins that are enzymes and their associated metabolic
pathways should allow advances in medicine, chemistry,
synthetic biology, and industry.
However, achievement of this potential is confounded by the

problem that reliable in vitro functions have been assigned to
only a small (and diminishing) fraction of the proteins in the
TrEMBL database.1 Every sequenced genome encodes a large
number of “hypothetical” proteins that share sufficiently low
levels of sequence similarity with those previously identified
that even hints of their molecular functions cannot be deduced.
An even more acute problem is that the functional annotations
for many proteins in GenBank are either misleading or
incorrect, as a result of incorrect computational assignment
based on annotations for the closest sequence homologues. As
additional incorrect annotations are made, these are propagated
throughout the databases, expanding the problem. A recent
critical analysis performed by one of us (P.C.B.) for members
of 37 characterized protein families concluded that 40% of the
sequences deposited as recently as 2005 were misannotated.1

As long as the deposited annotations remain uncorrected, this
problem is certain to become more prevalent and increasingly
problematic.
Therefore, determining reliable functions for unknown

proteins (biochemically uncharacterized proteins with uncertain
functions) discovered in genome projects is a major challenge
in contemporary biology. Although the impetus for assigning
these functions is clear, effective methods for doing so are not.
Strategies for functional assignment of unknown proteins have
utilized clues provided by many approaches, including (1)
sequence similarity by comparison to orthologous or
paralogous proteins, (2) colocalization of genes providing
operon/metabolic context for prokaryotic proteins, (3) tran-
scriptional analysis through chip-based and RNA-Seq tech-
nologies, (4) identification of upstream DNA motifs that might
coregulate transcription, (5) functions of multidomain proteins
to identify coupled activities in a pathway, (6) protein−protein
interaction studies, and (7) phenotypes of gene deletion/
knockout mutants. For enzymes, sequence similarity and/or
genome/operon context often can provide coarse functional
clues, e.g., the enzyme is a kinase, aldolase, or dehydrogenase,
but they are rarely sufficient to provide information about the
substrate specificity and, therefore, the actual reaction that is
catalyzed.

How might the identity of the substrate and, therefore, the
molecular function for an unknown enzyme be deduced in a
high-throughput fashion to meet the challenges presented by
the increasing number of genome projects? Given the number
of unknown sequences, biochemical experimentation alone is
clearly not a feasible strategy. Rather, computational approaches
are necessary to guide experimental verification and, also, to
annotate proteins that cannot be experimentally characterized.
Indeed, computational tools can play critical roles in functional
assignment:
(1) Bioinformatic analyses can cluster sequences into

probable isofunctional groups, thereby assigning tentative
functions to be investigated by structure determination,
structural modeling and docking, and biochemical experimen-
tation.
(2) Homology modeling methods can expand the use of

structural models to guide functional assignment to proteins
without experimentally determined structures.
(3) Computational docking methods can leverage structure

to guide functional assignment by suggesting substrates and
ligands for biochemical experimentation.
In fact, all three computational strategies play critical roles in

our efforts to develop a high-throughput, multidisciplinary
sequence/structure-based strategy for functional assignment, as
described in this Current Topic.

■ ENZYME FUNCTION INITIATIVE (EFI): OVERVIEW
With these considerations in mind, we proposed formation of
the Enzyme Function Initiative (EFI) in which computation-
based prediction of substrate specificity is the centerpiece of a
multidisciplinary strategy for functional assignment of unknown
enzymes.2 The strategy includes bioinformatics, experimental
structural biology, structural modeling and docking, and
experimental enzymology for the assignment of in vitro
substrate specificities and enzymatic functions as well as
microbiology (phenotypic analyses, genetics, and transcriptom-
ics); it also includes metabolomics to validate (or disprove) the
predicted and experimentally confirmed in vitro enzymatic
function as the authentic in vivo function (Figure 1).
The EFI started in May 2010 with the support of a Large

Scale Collaborative Project (Grant U54GM093342) from the
National Institute of General Medical Sciences (NIGMS). The
EFI is a five-year cooperative agreement among NIGMS, the
host institution (University of Illinois, Urbana, IL), and the
subcontracting institutions (refer to the author list for details).
A cooperative agreement is a support mechanism in which
NIGMS provides substantial scientific and programmatic
involvement; i.e., program staff assist, guide, coordinate, and/
or participate in project activities. The EFI is reviewed by
NIGMS on a continuing basis, with formal reviews after 18 and

Figure 1. The goal of the EFI is to develop a multidisciplinary, high-throughput strategy for functional assignment of unknown enzymes.
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36 months. This modus operandi differs from investigator-
initiated research grants (R01) and program project grants
(P01) in which the scientific direction and progress usually are
not subject to active oversight by NIGMS staff during the
project period. Peter Preusch, chief of the Biophysics Branch in
the NIGMS Division of Cell Biology and Biophysics, is the
Scientific Officer and a member of the EFI’s internal Steering
Committee. Warren C. Jones, chief of the Biochemistry and
Biorelated Chemistry Branch in the NIGMS Division of
Pharmacology, Physiology, and Biological Chemistry, is the
Program Officer who oversees the budgetary and administrative
aspects of the EFI within NIGMS. An external Scientific
Advisory Committee meets annually with the EFI to assess
progress and provide guidance for programmatic direction; the
members include Helen Berman [Rutgers University (Piscat-
away, NJ) and Director of the Protein Data Bank (PDB)],
Benjamin Cravatt (The Scripps Research Institute, La Jolla,
CA), Barry Honig (Columbia University Medical Center, New
York, NY), Eaton Lattman (Hauptman-Woodward Medical
Research Institute, University at Buffalo, Buffalo, NY), and
Rowena Matthews (University of Michigan, Ann Arbor, MI).
The EFI’s strategy for functional assignment can be

summarized by the “funnel” depicted in Figure 2. With the
available resources, the initial computational prediction of
substrate specificity can be performed in a relatively high
throughput (tens of enzymes per month); the subsequent
experimental enzymology that tests the computational

predictions can be performed with modest throughput (several
enzymes per month), and in vivo studies of the in vitro assigned
functions are labor and time intensive and, therefore, low
throughput (one or two per month), limiting the number of in
vivo functions that can be evaluated. However, without reliable
computational prediction, experimental evaluation would be a
random walk through substrate space, preventing efficient
functional assignment. Furthermore, without in vivo “testing”,
the in vitro assigned functions may be uninformative about the
in vivo function (vide infra) or enzymes with promiscuous in
vitro substrate specificities could have uncertain physiological
importance.
The protein “targets” selected to develop the strategy for

functional assignment are members of functionally diverse
enzyme superfamilies (conserved partial reactions or chemical
capability but divergent overall function), so that assignment of
function is not trivial; i.e., homology inferred from simple
sequence comparisons alone does not allow assignment of
function.3,4 For example, the members of the functionally
diverse enolase superfamily catalyze different reactions that
always are initiated by Mg2+-assisted enolization of carboxylate
anions and include β-elimination (dehydration, deamination,
and cycloisomeriation) and 1,1-proton transfer (racemization
and epimerization) reactions.5,6 In another example, members
of the functionally diverse amidohydrolase superfamily catalyze
metal-assisted hydrolysis of C−O, C−N, and P−O bonds in
diverse substrates.7

Figure 2. “Funnel” for functional assignment, showing the roles and relative throughputs of the computational and experimental stages in functional
assignment.
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Briefly, our approach (“pipeline” in Figure 3) is (1) to use
sequence relationships to identify putative isofunctional families

within functionally diverse superfamilies from which targets are
selected to develop, test, and improve the strategy; (2) for
bacterial enzymes to analyze the genome/operon contexts
within the families to identify other enzymes that are part of the
same metabolic pathway to provide additional functional clues;
(3) when possible to purify and structurally characterize the
targets and, when appropriate, other enzymes in the metabolic
pathway; (4) if structures cannot be determined experimentally
to use homology modeling to obtain reliable models; (5) to
perform in silico ligand docking to generate rank-ordered lists
of predicted substrates; (6) to experimentally screen predicted
substrates for activity, as well as synthesize and screen novel
compounds suggested by docking, to determine in vitro
function; (7) to determine structures of liganded complexes
so that the predicted and experimental binding “poses” of the
substrate (or analogue/product) can be compared to evaluate
and improve the computational procedures for homology
modeling and/or ligand docking; (8) when possible to

elucidate the in vivo function by a combination of focused
genetics (knockouts and overexpression), transcriptomics, and
metabolomics; and (9) when possible to do so with high
confidence to transfer annotations from the proteins for which
the EFI has established reliable functions to other unknowns.1,8

Elements of this strategy had been demonstrated by some of
the authors (J.A.G., S.C.A., P.C.B., M.P.J., F.M.R., A.S., and
B.K.S.) for the functionally diverse amidohydrolase and enolase
superfamilies (vide infra); with the support of the EFI, those
efforts are being expanded to include dedicated protein
production and structure determination for targets from
additional functionally diverse superfamilies as well as micro-
biology and metabolomics.
The EFI’s efforts are not organized according to Specific

Aims that are integral to traditional research grants, e.g., NIH
R01 and P01 funding mechanisms. Instead, the EFI focuses on
deliverables that will benefit the biomedical community. These
deliverables include (1) development of a multidisciplinary
sequence/structure-based strategy for predicting the functions
of unknown enzymes discovered in genome sequencing
projects, (2) dissemination of the strategy to the community
by publications, web-based interfaces, workshops, symposia,
and collaboration of external investigators with the bioinfor-
matics and computational components of the EFI, (3)
development of computational and bioinformatic tools for
utilizing the strategy, (4) making the genes encoding all targets
available to the community via the PSI-MR (http://psimr.asu.
edu/) [to the extent possible, compounds used for
experimental studies of enzymatic activity will be disseminated;
if these are not available in sufficient quantities to allow
distribution, the procedures for their synthesis will be made
available; protocols for protein expression and functional assays
also will be available via PepcDB (http://pepcdb.sbkb.org) and
the EFI’s Website (http://enzymefunction.org), respectively],
and (5) dissemination of data via the EFI’s Website. In the
following sections, we describe the organization of the EFI as
well as its internal collaborative interactions and operations.

■ EFI: SCIENTIFIC CORES
Central to the EFI’s strategy is exploitation of developments in
bioinformatics, structural genomics, homology modeling, and in
silico screening for high-throughput prediction of the substrate
specificities of unknown enzymes. The EFI is composed of six
Scientific Cores (Superfamily/Genome, Protein, Structure,
Computation, Microbiology, and Data/Dissemination) and
five Bridging Projects that focus on different functionally
diverse superfamilies selected as model systems for the
development of the strategy [amidohydrolase (AH), enolase
(EN), glutathione transferase (GST), haloalkanoic acid
dehalogenase (HAD), and isoprenoid synthase (IS)].
The Scientific Cores constitute the intellectual and

technological “heart” of the EFI. Each is responsible for one
of the multidisciplinary approaches that is essential for the
successful development and dissemination of the multi-
disciplinary sequence/structure-based strategy for facilitating
functional assignment.
The pipeline that describes the flow of information and

materials among the Cores and Bridging Projects is shown in
Figure 3. Their individual and collaborative roles are
summarized here.
Superfamily/Genome Core. As the sequence databases

expand, the increasing number of members of individual
protein families and functionally diverse superfamilies makes

Figure 3. Pipeline for functional assignment adopted by the EFI.
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Figure 4. Representative sequence similarity networks for the mandelate racemase (MR) subgroup of the enolase superfamily. Sequences are shown
as nodes (dots); connections with BLASTP E values more stringent than a specified threshold are shown as edges (lines). (A) BLASTP E values of
<10−40. (B) BLASTP E values of <10−80. As the BLASTP E value threshold is made more stringent, the sequences separate into discrete clusters; at
<10−80, many of the clusters are isofunctional families. Nodes colored gray have unknown functions.
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traditional approaches for viewing sequence relationships, i.e.,
trees and dendrograms, difficult. Sequence similarity networks
developed in part by one of the authors (P.C.B.) provides a
powerful approach to identifying and classifying members of
large groups of homologous proteins.9 The Superfamily/
Genome Core provides regular updates of the membership of
the EFI’s superfamilies that are then subjected to additional
bioinformatic analyses. Automated scripts and new structure/
sequence motif methods are used to identify members of each
superfamily, with expert curators overseeing the grouping of the
sequences into isofunctional families. The sequences are
maintained in the Structure−Function Linkage Databasea

(SFLD; http://sfld.rbvi.ucsf.edu)10 that also provides sequence
similarity networks and other tools that allow facile
organization of the members of functionally diverse super-
families into putative isofunctional families (“clusters”) (Figure
4) using the open source software Cytoscape.11 These
resources are used, in collaboration with the Computation
Core and Bridging Projects, to identify and prioritize targets for
functional assignment as well as assist the other Cores and
Bridging Projects in their studies.
Protein Core. The Protein Core is responsible for high-

throughput cloning, protein expression, and protein purification
in providing samples for structure determination by X-ray
crystallography by the Structure Core and enzymatic assays and
library screening by the Bridging Projects. As the EFI enters its
second year, the infrastructure is in place for large-scale protein
production and distribution to both the Structure Core and
Bridging Projects (as many as 600 proteins per year). In
collaboration with the Structure Core, the Protein Core screens
proteins for ligands using thermal denaturation-based ap-
proaches, i.e., ThermoFluor.12,13 Ligand screening both
provides functional clues and, more importantly, can support
cocrystallization experiments with ligands that yield structures
in conformations relevant to enzymatic catalysis. These
“catalytically competent” structures are the most valuable, as
they provide productively “dockable” templates for in silico
screening by the Computation Core.
Structure Core. Considerable economies have been

realized in protein production and structure determination, in
part because of the efforts of the Protein Structure Initiative
(PSI). On the basis of these advances, we anticipate that the
Structure Core will be able to determine as many as 50 “new”
structures and 50 liganded structures per year.
The availability of high-resolution structures allows the

Computation Core to use in silico analyses that provide
predictions of substrate specificity and, also, to construct
models of homologous sets of proteins to predict how function
diverges as sequence diverges. The X-ray structures are critical
for evaluating the structural bases for specificity and thereby
accessing the accuracy of the computational predictions against
experimentally liganded structures. Concurrently, the X-ray
structures also provide an important check on the ability of
computational algorithms to correctly predict the structure of
the liganded active site.
Computation Core. The Computation Core develops,

applies, and disseminates computational tools that leverage
structural information to infer enzymatic function. As discussed
in the following paragraphs, the two primary classes of tools are
homology modeling for enzymes without experimental
structures and in silico metabolite docking.
Comparative protein structure modeling (homology model-

ing) leverages the results from experimental structural biology

so that useful models of large a numbers of proteins can be
obtained.14−17 In early October 2011, the ModBase database,18

developed by one of the authors (A.S.), contained 21092755
comparative models for domains in 3505676 unique sequences
(http://salilab.org/modbase/). Thus, the large number of
experimental and predicted structures of unknown proteins
allows the use of in silico docking to tackle the challenge of
high-throughput functional prediction.
Virtual screening (in silico docking), using computational

algorithms to evaluate complementarity between a protein
receptor and a virtual library of small molecules, is a widely
used strategy in both academia and the pharmaceutical industry
for identifying lead compounds for drug discovery.19−22 The
lead compounds so identified need not have any structural
similarity to the natural ligands; an effective inhibitor provides a
scaffold on which substituents are placed to optimize steric and
polar interactions with the receptor site. Computational
docking can screen extremely large virtual ligand libraries,
ranking hits using an energy scoring function to identify those
that are predicted to best fit the receptor site.
Until recently (vide infra), docking had not been used to

screen virtual metabolite libraries for substrates of enzymes.
Identification of substrates is a much more difficult problem
than identification of inhibitors because drugs only need to “fill”
the receptor site so that they can act as competitive inhibitors
and do not need to structurally resemble the natural ligand. In
contrast, substrates require a precise orientation via specificity-
determining residues so that the reactive portion is positioned
productively adjacent to the catalytic residues.
Experimental screening of physical ligand libraries is time-

consuming and inefficient; negative results from experimental
screening rarely provide useful information for discovery of the
correct ligand. However, virtual screening offers the potential to
be a high-throughput predictive method that can focus
experimental assignment of function to specific substrate
candidates, thereby facilitating the discovery of either known
or novel substrates. Unlike physical library screening, virtual
screening is not limited to known metabolites, commercially
available compounds, and/or those that can be readily
synthesized. Virtual libraries can include novel substrates as
well as structural variants of known metabolites that, on the
basis of genome/operon context or physiology, are candidate
substrates. If novel compounds are prominent in the energy-
ordered list (“hit” list) of predicted substrates, focused synthetic
efforts by the Bridging Projects can be justified for testing the
predictions.
The Computational Core applies these tools to unknown

members of the five Bridging Project superfamilies to guide the
selection and/or synthesis of specific metabolites or focused
libraries for use in enzymatic assays as well as ligand binding
screens performed by the Protein Core. The computational
methods are subjected to continuous development and
refinement as the results of in silico docking are compared
with the results of enzymatic assays by the Bridging Projects
and liganded structures by the Structure Core. As feasible, the
Computation Core will collaborate with the community to
apply these computational tools to enzymes outside the five
superfamilies (vide infra).
Microbiology Core. The Microbiology Core examines in

vitro assigned functions using in vivo approaches, including (1)
construction of knockout (null) and overexpression mutants of
targets in genetically tractable bacteria, (2) phenotypic
evaluation of wild-type and mutant strains in chemically
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defined media, (3) transcriptomic analyses of wild-type and
mutant strains under conditions in which a phenotype is
identified, and (4) mass spectrometric identification of
metabolites in wild-type and mutant strains grown in
chemically defined media to detect and quantitate the
abundance of the substrates and products as well as related
intermediates in metabolic pathways.
To facilitate in vivo studies, most targets for functional

assignment are selected from bacterial genomes and, in many
cases, from organisms that are genetically tractable so that
knockout mutations can be constructed for phenotypic
analyses. The extension to in vivo function provides a check
on the predicted and experimentally confirmed in vitro function
and, more importantly, allows the metabolic and physiological
contexts of novel reactions to be defined. For example, in vivo
studies may reveal a single substrate for an enzyme that is
functionally promiscuous in in vitro studies. Alternatively, in
vivo experiments may reveal that the identity of the in vitro
enzymatic function does not apply in the context of the
organism (vide infra) and provide essential information for
improving the computational predictions and informing the in
vitro characterization.
Data/Dissemination Core. The Data/Dissemination

Core is responsible for developing and maintaining (1) the
EFI’s public Website (http://www.enzymefunction.org) that
serves as a resource for information for the development of the
multidisciplinary strategy and as a “user friendly” portal to the
EFI’s selected targets, ensuing experimental data, and the
computational and experimental tools; (2) a public database of
experimental data (EFI-DB; http://kiemlicz.med.virginia.edu/
efi/) that allows interrogation of data gathered on each target,
e.g., cloning, purification, and structure determination, as well

as the results of enzymatic assays and phenotypic/tran-
scriptomic/metabolomic analyses as the latter become publicly
available (as determined by NIH policy for data sharing); (3)
an internal database (LabDB) for semiautomated recording and
analysis of experimental data to be transferred into EFI-DB;
and (4) the SFLD database that provides highly curated
sequence information, and links to external databases
containing sequence, genomic context, structural, and computa-
tionally derived information for the functionally diverse
superfamilies under study by the EFI as well as an expanding
number of other superfamilies, e.g., enoyl-CoA hydratase,
vicinal oxygen chelate, RuBisCO, nucleophilic-6-bladed β
propeller (N6P), and those of the thioredoxin fold class.

■ EFI: BRIDGING PROJECTS

The targets for developing the EFI’s multidisciplinary strategy
for functional assignment are selected from functionally diverse
superfamilies that are the experimental foci of the Bridging
Projects. The five Bridging Projects are focused on functionally
diverse superfamilies (AH, EN, GST, HAD, and IS) that span
four of the six reaction classes defined by the Enzyme
Nomenclature Classification System (EC)23 and four fold
classes (Figure 5). The selected superfamilies range in size from
several thousands to tens of thousands of members and differ in
domain organization and architecture, substrate chemotypes
and structures, metal requirements, and catalytic strategies.
They represent a broad sampling of the enzyme universe and,
together with associated operon-encoded proteins, provide
appropriate targets for developing and testing the general utility
of the EFI’s strategy and inspire further generalization of its
methods.

Figure 5. Architectures and folds for the five functionally diverse superfamilies from which targets are selected for development of the EFI’s
multidisciplinary functional assignment strategy.
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AH Bridging Project. The members of the AH super-
family (∼25000 members) catalyze diverse reactions that
involve stabilization of an anionic intermediate by a conserved
metal center (one to three Zn2+, Mn2+, Fe2+, or Ni2+ metal
ions). Most reactions involve hydrolysis of phosphate esters,
esters, and amides, although divergent members catalyze 1,2-
proton transfer and decarboxylation reactions.7 The polypep-
tides fold as a single domain that has the ubiquitous (β/α)8-
barrel (TIM-barrel) fold; thus, both substrate specificity and
chemical mechanism are determined by the same domain. The
AH superfamily was selected for inclusion in the EFI because
(1) substrate specificity often is defined by flexible loops
consisting of residues that determine substrate specificity, (2)
the superfamily is estimated to catalyze a large number of
reactions (≥100), and (3) organisms often contain paralogues
with different substrate specificities.
EN Bridging Project. The members of the EN superfamily

(>6000 nonredundantb members) catalyze diverse reactions
involving a Mg2+-stabilized enolate anion intermediate obtained
by abstraction of the α-proton of a carboxylate substrate,
including β-elimination (cycloisomerization, dehydration, or
deamination) and 1,1-proton transfer (racemization or
epimerization) reactions.5,6,24 The polypeptides fold as two
domains, with loops in the N-terminal (α+β) capping domain
providing determinants for substrate specificity and the C-
terminal (β/α)7β-barrel (TIM-barrel) domain providing the
residues that deliver the chemistry. The EN superfamily was
selected for inclusion in the EFI because it arguably is the best
characterized functionally diverse superfamily and, therefore,
provides a “gold standard” set of enzymes and reactions that
can be used to test new computational methods by both
retrospective and prospective analyses.
GST Bridging Project. The members of the GST

superfamily (>13000 nonredundant members in the cytosolic
GST superfamily) catalyze a diverse range of redox reactions as
well as conjugation reactions in xenobiotic metabolism.25−27

The canonical GST superfamily members are composed of an
N-terminal domain that has a thioredoxin-like fold and a C-
terminal domain that has a unique α-helical fold; the active sites
are located at the domain interface. An alternate fold in which
the thioredoxin-like domain is interrupted by the α-helical
domain is also found in eukaryotes and prokaryotes.28,29 This
fold represents the so-called kappa GSTs, another superfamily
in the thioredoxin fold class whose members catalyze the GST
reaction.30,31 The canonical superfamily harbors members that
have robust disulfide bond oxidoreductase activity;32,33 these
enzymes likely utilize proteins as substrates, thereby extending
the challenge of functional prediction to protein−protein
interactions. The GST superfamily was selected for inclusion in
the EFI because a large number of its diverse members have not
been characterized with respect to the boundaries among
sequence, structure, and function.
HAD Bridging Project. The members of the HAD

superfamily (>32000 nonredundant members) catalyze a
diverse range of reactions that involve the Mg2+-dependent
formation of a covalent intermediate with an active site Asp.
The reactions include dehalogenation, phosphoryl transfer, and
hydrolysis of phosphate esters, phosphate anhydrides, and
phosphonates.34−37 The polypeptides share a Rossman-like
fold, and most contain a cap module that regulates access of
substrates to the active site while providing substrate specificity
determinants. Phosphatases are prevalent in the HAD super-
family and often have promiscuous substrate specificities and

unknown biological functions. The HAD superfamily was
selected for inclusion in the EFI because of the challenges it
offers for the development of (1) computational methods for
substrate prediction and (2) microbiology- and metabolomics-
based strategies for in vivo function assignment.
IS Bridging Project. The members of the IS type 1

superfamily (>7600 nonredundant members) catalyze often
complex C−C bond forming reactions initiated by Mg2+-
assisted dissociation of a pyrophosphate moiety from an allylic
diphosphate substrate followed by reactions and rearrange-
ments in which the conformations of electrophilic carbocation
intermediates relative to nucleophilic double bonds determine
the structure of the product.38,39 The polypeptides share an α-
helical bundle fold, with the shape of the active sites controlling
the conformation of the bound substrate and, therefore, the
identity of the product. Unlike the other EFI superfamilies, the
range of substrates is almost exclusively limited to only one
homoallylic and four allylic diphosphate substrates, so the
functional assignment challenge is primarily product prediction.
The IS superfamily also was selected for inclusion in the EFI
because only a small number of sequences have been
functionally characterized, so priorities for target selection are
difficult to define.

■ INTEGRATION OF THE CORES AND BRIDGING
PROJECTS: THE INTEGRATED STRATEGY

Success of the EFI’s integrated sequence/structure-based
strategy to facilitate functional assignment will be judged by
its ability to facilitate the discovery of new functions for
enzymes of enormous diversity. Interactions between the
components of the pipeline for target selection and down-
stream evaluation of functional predictions are critical for
optimizing this strategy (Figure 3).
EFI Target Selection. The Superfamily/Genome, Protein,

Structure, Computation, and Microbiology Cores together with
the Bridging Projects collaborate on the selection of targets.
The Superfamily/Genome Core collects member sequences for
each of the superfamilies and defines sequence and structure
boundaries expected to be useful for identification of
isofunctional families, based on multiple bioinformatic analyses,
including similarity networks (e.g., Figure 4). Using this
visualization as well as information about genome/operon
context, divergent families are identified and then evaluated by
the Computation Core to assess the feasibility for ligand
docking as well as whether the various families provide
challenges for docking that allow the enhancement of the
computational algorithms. The Bridging Projects contribute
their accumulated experimental experience to reveal insights
into possible functions and substrates, based on conservation of
active site functional groups and divergence of specificity-
determining residues. The Protein and Structure Cores provide
input about the feasibility of protein expression, purification,
crystallization, and structure determination, based on the
accumulated experience with members of each of the
superfamilies, e.g., position of affinity tags for protein
purification, exploration of fermentation conditions for
optimizing metal loading, genome availability, and gene
synthesis. Finally, the Microbiology Core provides information
about genetic tractability. Although some targets are selected
for exploring divergent sequence and, therefore, function space,
many targets are chosen to address specific scientific questions
such as exploring the boundaries between substrate specificities
as sequence diverges. The latter targets provide the ability to
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test and develop the computational algorithms on homologous
proteins as the level of sequence similarity decreases.
EFI Target Initiation. Selected targets are communicated

to the Protein Core for inclusion in the pipeline (Figure 3) for
gene cloning, protein expression and purification, ThermoFluor
screening, and experimental structure determination by the
Structure Core. Protein samples also are provided to the
Bridging Projects for focused library screening and enzymatic
assays to test the substrate specificity predictions from the
Computation Core.
Structural Characterization of EFI Targets. When the

Computation Core concludes that an existing liganded
structure shares sufficient similarity with the target, a homology
model is generated to provide a template for docking, thereby
providing a faster and higher-throughput approach for
computational predictions of substrate specificity. In such
cases, the type of reaction catalyzed by the template, e.g., acid
sugar dehydration in the EN superfamily, may be the type of
reaction catalyzed by the target, with the template and target
differing in substrate specificity.
Parallel protein production by the Protein Core and structure

determination by the Structure Core occur when possible so
that (1) the predicted substrate specificity can be exper-
imentally tested by the Bridging Projects and (2) the accuracy
of the pose of the liganded active site predicted by the
Computation Core can be assessed, thereby validating the
results of the docking predictions.
Generation of Functional Predictions for EFI Targets.

Irrespective of the method by which the target structure is
obtained, the Computation Core uses its methodologies,
including flexible receptor40,41 and high-energy intermediate
(HEI) docking,42,43 to assemble energy-ordered hit lists of
predicted substrates. In flexible receptor docking, the rotameric
conformations of the side chains of the active site residues are
varied to identify the lowest-energy complex; in HEI docking,
the structures of reactive intermediates, e.g., tetrahedral
intermediate hydrolyses of esters and amides, are used for
docking. These hit lists are computationally filtered to prioritize
the identities of focused substrate libraries for the Bridging
Projects.
Testing of Functional Predictions for EFI Targets. The

Bridging Projects in combination with the Microbiology Core
evaluate the functional predictions (substrate hit lists) provided
by the Computation Core and procure (by purchase, in-house
synthesis, and/or custom synthesis) predicted substrates for use
in focused libraries for enzymatic assays. In the AH, EN, and
HAD superfamilies, the reactions are unimolecular or use water
as a cosubstrate, so identification of the substrate is equivalent
to function prediction. In the GST superfamily, glutathione (or
spermidinylglutathione) is always a substrate, so in silico
docking predicts the cosubstrate and, therefore, the function. In
the IS superfamily, the identities of both the predicted
substrate(s) (from a set of five allylic pyrophosphates) and
predicted product are tested.
Functional Assignment and Rescue of EFI Targets.

Criteria for deciding the flow of targets through the
experimental (enzymological and microbiological) components
to functional assignment include the following (Figure 3).
(1) If the kinetic constants for the in vitro function are

consistent with those expected for a typical metabolic enzyme,
e.g., kcat/KM ≥ 104 M−1 s−1,44 and the target is from a tractable
organism, it is referred to the Microbiology Core for genetic,
phenotypic, transcriptomic, and/or metabolomic “confirma-

tion”. If the predicted reaction is catalyzed but the value of kcat/
KM is lower than expected, the substrate, product, or analogue
is provided to the Structure Core for cocrystallization, and the
resulting liganded structure is provided to the Computation
Core for additional in silico ligand docking.
(2) If the predicted reaction is not catalyzed but another

reaction is identified with “unfocused” library screening by the
Bridging Project, the substrate, product, or analogue for that
reaction is provided to the Structure Core for cocrystallization,
and the liganded structure is provided to the Computation
Core for assessment of prediction failure. Such situations are
instructive, in fact essential, for development of the strategy
because the structure-based explanation for an incorrect
predicted function suggests how the algorithms for docking
and/or homology modeling can be improved.
(3) If no reaction is identified, the target is placed “on hold”

for salvage as the integrated strategy is improved.

■ SUCCESSFUL EXAMPLES OF THE INTEGRATED
STRATEGY

The feasibility of using in silico ligand docking to facilitate
functional assignment was demonstrated in a smaller program
focused on the AH and EN superfamilies (J.A.G., S.C.A., P.C.B.,
M.P.J., F.M.R., A.S., and B.K.S.). Those efforts resulted in
several successful focused predictions of substrate specificity in
the functionally diverse AH43,45−48 and EN41,49,50 superfamilies.
Recently, this methodology was used to generate high-
throughput substrate specificity predictions for the entire
dipeptide epimerase family in the EN superfamily.c

Noteworthy among these examples is the prediction of the
function of an unknown member of the AH superfamily
encoded by the Thermotoga maritima genome (Tm0936) as S-
adenosylhomocysteine deaminase, a novel enzymatic reaction.
This prediction was accomplished by docking a library of high-
energy intermediates to the three-dimensional structures
determined by PSI-2 centers [Protein Data Bank (PDB)
entries 1P1M and 1J6P]43 (Figure 6A). In another example, the
N-succinyl Arg racemase function was predicted for a member
of the cis,cis-muconate lactonizing enzyme (MLE) subgroup of
the EN superfamily encoded by Bacillus cereus ATCC 14579
(BC0371). This prediction was accomplished by flexible
receptor docking of a virtual library of dipeptides and N-
succinyl amino acids to a homology model generated using the
structure of the L-Ala-D/L-Glu epimerase from Bacillus subtilis
(PDB entry 1TKK) as the template41 (Figure 6B). Finally, new
specificities for many of the >700 members of the dipeptide
epimerase family in the EN superfamily were predicted by in
silico docking to homology models based on the 1TKK
template and experimentally verified by enzymology; in
addition, several of the liganded structures were determined
by X-ray crystallography, allowing validation of the liganded
active site models. On the basis of these results, virtually all of
the predicted dipeptide epimerases in the enolase superfamily
can be annotated; these annotations will be made available in
the SFLD.

■ CHALLENGES FOR DEVELOPMENT OF THE
INTEGRATED STRATEGY

Despite these examples of success, in silico ligand docking is
not always successful in correctly predicting substrate
specificities. One reason for failure is that experimentally
determined structures are not necessarily in “dockable”
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conformations; e.g., substrates often induce conformational
changes, and the conformational sampling methods are not
capable of finding the bound conformation. One way to
circumvent this problem is to screen unknown enzymes for

ligand/substrate fragment binding via thermal stabilization
using libraries of small molecule substrate fragments and/or
potential mimics of intermediates, e.g., hydroxamates for
enolate anions in the case of the EN superfamily. Such
scanning can be monitored in a high-throughput manner using
the ThermoFluor assay that can measure binding of a
hydrophobic dye as a function of temperature in a 96-well
format;12,13 the infrastructure for these analyses has been
implemented by the Protein Core.
Another reason for incorrect predictions is that while the

actual substrate may be present in the docking hit list, it may
not score highly because of inaccurate scoring functions.
Improved prediction specificity may be possible with the
addition of orthogonal information. For example, when the
target participates in a metabolic pathway and its gene is
encoded by an operon that encodes other enzymes in the
pathway, common characteristics among the ligands of enzymes
that catalyze successive reactions in a pathway may be revealed
by in silico docking results for all enzymes in the pathway,
thereby providing functional clues that restrict the identities of
the substrates for each of the enzymes. This approach has been
illustrated by a retrospective analysis of the glycolysis pathway
in Escherichia coli published by one of us (M.P.J.).51

As described above, the role of the Microbiology Core is to
provide in vivo evaluation of in vitro assigned functions in the
context of physiology and to assign the metabolic roles of
functions in novel metabolic pathways. For example, the
metabolic role of the N-succinyl Arg racemase reaction that was
computationally predicted and experimentally verified remains
unknown.41 Although the encoding gene is not located in an
operon, the metabolic function may be the conversion of D- to
L-amino acids via N-succinylated intermediates;52 a knockout of
the encoding gene in the B. cereus ATCC 14579 genome may
provide a phenotype, and these experiments are underway.
Determination of phenotypes for knockouts under a wide range
of growth conditions may be necessary to discover the in vivo
function, although testing for utilization of D-amino acids as a
nitrogen source may be sufficient. In either case, the
Microbiology Core has implemented a high-throughput
platform for phenotypic analyses of metabolic activity by
using a BioLog PM instrument that allows as many as 4800
growth conditions to be simultaneously examined in a 96-well
plate format.
The Microbiology Core already has discovered an example of

an in vitro assigned function that is “incorrect” in the context of
the encoding organism’s metabolism. In the RuBisCO
superfamily, one of our laboratories (H.J.I. and J.A.G.)
characterized a novel 1,3-proton transfer to a RuBisCO-like

Figure 6. (A) Tm0936 (AH superfamily). Computationally predicted
pose of the high-energy intermediate (green) superimposed on
experimental structure (red, with electron density contours).43 (B)
BC0371 (EN superfamily) in complex with substrate N-succinyl Arg,
as predicted by homology modeling and docking (cyan) as well as
determined by crystallography (yellow).41 Both panels are reproduced
with permission from the publisher. Copyright 2007. Nature
Publishing Group.

Scheme 1

Biochemistry Current Topic

dx.doi.org/10.1021/bi201312u |Biochemistry 2011, 50, 9950−99629959



protein (RLP) from Rhodospirillum rubrum in which 5-
methylthio-D-ribulose 5-phosphate is converted to a 3:1
mixture of a 1-methylthioribulose/xylulose 5-phosphate in
two successive 1,2-proton transfer reactions (Scheme 1). The
identities of the reaction products were established using 1H,
13C, and 32P NMR spectroscopy and mass spectrometry.53

However, the Microbiology Core has obtained evidence that
the first 1,2-proton transfer reaction to generate the “3-ulose”
intermediate is the physiological reaction in R. rubrum.d The
“4-ulose” product obtained in vitro by the second 1,2-proton
transfer reaction is the thermodynamically most stable isomer
of the substrate and apparently accumulates if the 3-ulose
species is not utilized as a substrate by the next enzyme in the
pathway.

■ INTERACTIONS OF EFI WITH THE COMMUNITY

As noted in Enzyme Function Initiative (EFI): Overview, the
EFI’s deliverables include not only development of the
multidisciplinary strategy for functional assignment using
targets selected from the EFI’s five functionally diverse
superfamilies but also dissemination of the strategy to the
community. At this early stage of the EFI, we are focused on
developing high-throughput, yet still high-quality, tools for the
strategy, including bioinformatics analyses by the Superfamily/
Genome Core as well as modeling and docking tools by the
Computation Core. Our resources for the “wet” experimental
aspects of the integrated strategy are more limited and currently
restricted to the five Bridging Projects. However, the EFI has
sufficient resources for establishing collaborations of the
Superfamily/Genome and Computation Cores with the
scientific community to facilitate assignments of function in
other functionally diverse superfamilies.
In most cases, we expect that these collaborations will involve

initial interactions with the Superfamily/Genome Core so that
sequence similarity networks can be constructed for a given
superfamily, thereby providing an overview of the extent of
functional diversity (isofunctional families) within the super-
family. This information also will facilitate selection of the most
viable targets for addressing specific functional assignment
problems and may be sufficient for subsequent investigations of
functional assignments in the collaborator’s laboratory.
However, depending on the availability of experimental
structures or homology models, we expect that the sequence
similarity networks also will encourage selection of targets for in
silico ligand docking and substrate prediction by the
Computation Core; these predictions would then be tested in
the collaborator’s laboratory.
The EFI encourages the community to propose collabo-

rations that involve functionally diverse superfamilies that
currently are not within its focus. This can be accomplished by
completing a form on the “Collaborations” page of the EFI’s
Website (http://enzymefunction.org/collaborations/overview)
that includes a short proposal (two or three paragraphs) for the
expected nature and scope of the collaboration as well as several
leading references about the superfamily. For example, these
collaborations may involve investigations of the functions of
specific divergent members of functionally diverse super-
families, with the interactions with the Superfamily/Genome
Core providing sequence/family context and with the
Computation Core providing predictions of substrate specific-
ities and, therefore, enzymatic functions. We also encourage
interested members of the community to register on the

“Home” page of the EFI Website for e-mail alerts that will
provide news and updates.
The EFI will organize workshops as well as symposia at

scientific meetings that will involve participation not only by
the EFI principal investigators but also by members of the
scientific community who are actively involved or interested in
the challenges presented by functional assignment of unknown
enzymes. We expect that the EFI will catalyze interactions in
the community to facilitate the development of the strategy and
necessary methodologies for comprehensive enzyme annota-
tion.

■ SUMMARY

Assigning reliable functions to unknown enzymes discovered in
genome projects is a complex yet critical challenge that will
only increase in magnitude as the databases continue to expand.
While many strategies ultimately may be required, the EFI is
taking the lead by developing and disseminating a systematic
and robust approach to meet this challenge. We anticipate that
enhancing the ability of bioinformatics to identify informative
sequence relationships, of homology modeling to allow
accurate high-throughput structure prediction, and of in silico
ligand docking to provide accurate and testable hit lists of
potential targets will be valuable contributions of the EFI.
Coupling these advances with the enzymology community’s
extensive experimental knowledge will contribute to a “new
era” of enzymology in which genomic sequence information
facilitates a wider range of intellectual, physiological, bio-
medical, and commercial applications.
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