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Abstract

Background: Pyrosequencing is a DNA sequencing technology based on the sequencing-by-synthesis principle.

Methods: The technique is built on a 4-enzyme real-time monitoring of DNA synthesis by bioluminescence using a cascade that upon

nucleotide incorporation ends in a detectable light signal (bioluminescence). The detection system is based on the pyrophosphate released

when a nucleotide is introduced in the DNA-strand. Thereby, the signal can be quantitatively connected to the number of bases added.

Currently, the technique is limited to analysis of short DNA sequences exemplified by single-nucleotide polymorphism analysis and

genotyping. Mutation detection and single-nucleotide polymorphism genotyping require screening of large samples of materials and therefore

the importance of high-throughput DNA analysis techniques is significant. In order to expand the field for pyrosequencing, the read length

needs to be improved.

Conclusions: Th pyrosequencing system is based on an enzymatic system. There are different current and future applications of this

technique.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Overview of DNA sequencing technologies

During the latter part of the 20th century, the innovation

of a range of DNA sequencing techniques enabled a

revolution in the field of molecular biology. In the 1970s,

technologies for sequence determination of DNA were

invented, both by Maxam-Gilbert [1] and Sanger [2], and

these techniques enormously increased the possibilities of

genetic research. The complete DNA sequences of whole

genomes are currently known for an increasing number of

organisms including the human [3,4]. Detection of genetic

variations in a large number of samples representing a broad

range of biological material give insight into genetic

mechanisms of different diseases. Even with an increasing

number of genomes already sequenced, the importance of

technical developments in the field of DNA analysis is

evident. The number of DNA sequencing technologies is

currently high. Different techniques are advantageous over

others depending on the application and therefore, a general

ranking of the technologies may be incorporated or

misleading. The invention of the Sanger DNA sequencing

technique in 1977 [2] revolutionized DNA sequencing

technology. This sequencing technology is undoubtedly,

by far the most frequently used, exemplified by sequencing

of various genomes such as the human. The Sanger DNA

sequencing technique is based on DNA synthesis with

incorporation of normal dNTPs as well as ddNTPs causing a

termination of the newly synthesized DNA molecule. Thus,

the prematurely ended fragments can be analyzed with

regard to size. The size separation of the Sanger fragments

are usually performed by electrophoretic separation

although mass spectrometry analysis has also been

described [5,6]. Since the different dideoxy nucleotides

are used in different tubes or alternatively marked with

different fluorophores the DNA sequence can be deduced

from these results. Another DNA sequencing technique

presented by Maxam and Gilbert in 1977 is based on

sequencing by chemical cleavage [1]. In this technique, the

DNA fragments are generated either by digestion of the

sequencing template by restriction enzymes or PCR

amplification with the ends of the fragments labeled,

traditionally by radioactivity. Single stranded DNA frag-

ments radioactively labeled at one end are isolated and

subjected to chemical cleavage of base positions. Four

parallel cleavage reactions are performed, each one resulting
in cleavage after one specific base. The sequence is deduced

from the gel separation pattern like in the Sanger DNA

sequencing method. In 1975, Ed Southern [7] presented a

technique for detection of specific DNA sequences using

hybridization of complementary probes. This principle lays

the foundation for the sequencing by hybridization (SBH)

technology presented in 1988 [8,9]. Sequencing by hybrid-

ization utilizes a large number of short nested oligonucleo-

tides immobilized on a solid support to which the labeled

sequencing template is hybridized. The target sequence is

deduced by computer analysis of the hybridization pattern

of the sample DNA. DNA sequences can also be analyzed

by sequencing by synthesis. Pyrosequencing is a sequencing

method based on real-time monitoring of the DNA syn-

thesis. It is a four-enzyme DNA sequencing technology

monitoring the DNA synthesis detected by bioluminescence

[10]. The system is thoroughly described in this paper.

1.2. Different techniques–different applications

Sequencing technologies like Sanger, Maxam and Gilbert

and pyrosequencing have the ability to determine unknown

DNA sequence, de novo sequence determination. In

contrast, sequencing by hybridization (SBH) is mainly

suitable for detection of genetic variations within known

DNA sequences, re-sequencing. SBH may also be employed

for certain applications such as genotyping samples with

well-characterized genetic variations such as single nucleo-

tide polymorphisms (SNPs). However, the extremely small

differences in duplex stability between a perfect match and a

one-base mismatch duplex may limit the reliability and

applicability of this technology [11]. This difficulties can be

relieved by use of probes made of Peptide Nucleic Acid,

PNA, or Locked Nucleic Acids, LNA, which forms

duplexes with DNA with higher melting point than the

corresponding DNA–DNA duplex [12–14]. However,

currently the price of these molecules is significantly higher

compared to DNA.

The read length and accuracy of the obtained sequences

is of crucial importance for the choice of sequencing

technology. In the case of the Maxam and Gilbert technique

read length up to 500 bp has been achieved [15]. Never-

theless, the occurrence of incomplete reactions usually

decreases the read length. Using Sanger sequencing fol-

lowed by separation by capillary gel electrophoresis, the

average read-length obtained is typically between five

hundred and thousand bases. Several commercial systems
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are available for this technology and development in

capillary electrophoretic equipment has enabled rapid and

accurate determination of up to significantly above thousand

bases [16]. However, when using sequence technology for

identification of genetic variants such as SNP genotyping,

bacterial- or virus typing, detection of specific mutations,

gene identification in transcript analysis, etc., the read-length

required is much shorter. In these cases, running a several

hour experiment for obtaining sequences of several hundred

bases is not meaningful. In such cases, faster sequence

analysis methods like pyrosequencing are very attractive and

have been successfully used [17–32]. Moreover, the use of

directed base dispension in pyrosequencing analysis of

SNPs in close proximity to each other enables haplotype

profiling that is not possible using Sanger DNA sequencing.

One important argument for the choice of sequencing

technique is the amount of work and time required as well

the possibility for automation of different steps. In the

sequencing methods described above a step of template

amplification performed by Polymerase Chain Reaction,

PCR [33] is generally required. A PCR clean up prior to

sequence analysis is necessary and a vast number of

commercial solutions are available for this purpose. If using

the pyrosequencing technology, the purified PCR samples

are directly analyzed by real-time monitoring of the DNA

synthesis. In turn, when using Sanger DNA sequencing, the

sequencing reaction is followed by purification and there-

after separation of the Sanger DNA fragments. The frag-

ment purification has mainly been performed by ethanol

precipitation which includes several manual operations and

therefore does not readily lend itself to automation.

However, alternative techniques such as separation using

magnetic beads are available [34]. Although the Sanger

DNA sequencing methods can be highly automated, the

higher analysis time compared to pyrosequencing decreases

its suitability when only shorter sequences are required. The

chemical reactions in the Maxam and Gilbert technique are

slow and involve hazardous chemicals that require special

handling in the DNA cleavage reactions. Therefore, this

technology has not been suitable for large-scale investiga-

tions. Sequencing by hybridization would, if the accuracy

and reliability of the technique were sufficient, provide a

very fast analysis of a specific sequence.
2. Sequencing by synthesis

2.1. History

The real timemonitoring of DNA synthesis, the sequencing-

by-synthesis principle, was first described in 1985 [35]. The

technique is based on sequential addition of nucleotides to a

primed template and the sequence of the template is deduced

from the order different nucleotides are incorporated into the

growing DNA chain which is complementary to the target

template. In 1987, P. Nyrén described how DNA polymerase
activity can bemonitored by bioluminescence [36,37]. Recently

fluorescently labeled nucleotides have been used for sequencing

by synthesis. In order to minimize unwanted termination and to

be able to measure the incorporated nucleotides the labeling

group is removable. This has been accomplished both by

photocleavage and cleavage by reduction [38,39]. When

detecting the incorporation of nucleotides with luminescence,

a number of different enzymes are needed. In the early days this

sequence technology utilized six different sequential columns

with immobilized enzymes to pass the nucleotides through

upon each base addition [37]. Ten years later, the pyrosequenc-

ingDNAsequencingmethodwas presented [10] enabling faster

bioluminometric real-time sequence determination in solution.

2.2. The pyrosequencing principle

The 4 enzymes included in the pyrosequencing system

are the Klenow fragment of DNA Polymerase I [40], ATP

sulfurylase [41], Luciferase [42] and Apyrase [43] (Fig. 1).

The reaction mixture also contains the enzyme substrates

adenosine phosphosulfate (APS), d-luciferin and the

sequencing template with an annealed primer to be used

as starting material for the DNA polymerase. The four

nucleotides are added one at a time, iteratively, in a cyclic

manner and a CCD camera detects the light produced.

The enzymatic reactions exploited in the pyrosequencing

technology, with catalyzing enzyme given in the reaction in

parentheses, are the following. The first reaction, the DNA

polymerization, occurs if the added nucleotide forms a base

pair with the sequencing template and thereby is incorpo-

rated into the growing DNA strand.

ðDNAÞn þ dNTPYðDNAÞnþ1 þ PPiðPolymeraseÞ: ð1Þ

The inorganic pyrophosphate, PPi, released by the

Klenow DNA polymerase serves as substrate for ATP

Sulfurylase, which produces ATP:

PPi þ APSYATPþ SO2�
4 ðATP SulfurylaseÞ: ð2Þ

Through the third and fourth reactions, the ATP is

converted to light by Luciferase and the light signal is

detected. Hence, only if the correct nucleotide is added to

the reaction mixture, light is produced.

Luciferaseþ d� luciferinþ ATP!Luciferase� luciferin�
AMPþ PPi ð3Þ
Luciferase� luciferin� AMPþ O2YLuciferaseþ
oxyluceferinþ AMPþ CO2 þ light ð4Þ

Apyrase removes unincorporated nucleotides and ATP

between the additions of different bases.

ATPYAMPþ 2PiðApyraseÞ ð5Þ

dNTPYdNMPþ 2PiðApyraseÞ: ð6Þ
This degradation between base additions is crucial for

synchronized DNA synthesis asserting that the light signal



A C G T
Added dNTP

L
ig

ht
 s

ig
na

l i
nt

en
si

ty

Pyrogram Sequence of
synthesised DNA

A C T T 

 

Polymerase
TGAA

5’
3’Template

Primer 5’

Sulfurylase

Luciferase

Apyrase

dATP

A

PPi

hν

ATP

Polymerase
TGAA 5’

Sulfurylase

Luciferase

Apyrase

dCTP

hν

ATP

AC

PPi

Polymerase
TGAA 5’

Sulfurylase

Luciferase

Apyrase

dGTP

AC

2 ATP

Polymerase
TGAA 5’

Sulfurylase

Luciferase

Apyrase

dTTP

ACTT

2 hν

2 PPi

Sequence of
template DNA

T G A A 

5’
3’Template

Primer 5’
3’Template

Primer 5’
3’Template

Primer

Fig. 1. Schematic representation of the pyrosequencing enzyme system. If the added dNTP forms a base pair with the template, Klenow Polymerase

incorporates it into the growing DNA strand and pyrophospate (PPi) is released. ATP Sulfurylase converts the PPi into ATP which serves as substrate for the
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detected when adding a certain nucleotide only arises from

incorporation of that specific nucleotide.

2.3. Pyrosequencing enzymes

The performance of the four enzymes is crucial for the

accuracy of this DNA sequencing technology. Their basic

characteristics and influence on the quality of the pyrose-

quencing result is therefore discussed below.

2.3.1. Klenow DNA polymerase

DNA polymerases (E.C. 2.7.7.7) catalyze DNA polymer-

ization in replication and repair and are thus crucial for

survival of all living cells [44]. Escherichia coli DNA

polymerase I is the most extensively studied polymerase and

possess, in addition to polymerase activity, both 3VY5Vand
5VY3Vexonuclease activity. Proteolytic cleavage of the native
109 kDa polymerase by subtilisin results in one smaller

proteolytic fragment harboring 5VY3V exonuclease activity

and one larger fragment, called Klenow polymerase, that

possess both polymerase and 3VY5V exonuclease activity

[40]. However, by mutating only two amino acids, an

exonuclease deficient (exo�) Klenow with intact structure

and polymerase activity variant has been created [45]. In

pyrosequencing, the (exo�) Klenow polymerase is used for

extension of the primer and simultaneous release of PPi. The
deficiency of the 3VY5Vexonuclease activity is important in

order to avoid unsynchronized DNA polymerization.

Although, the (exo�) Klenow used in pyrosequencing is

devoid of the proofreading 3VY5Vexonuclease activity from

DNA polymerase I, several mechanisms in the DNA

extension ensure high fidelity of base insertion. Firstly, the

binding of the correct nucleotide is stronger than binding of

an incorrect one [46]. Secondly, the necessary conforma-

tional change from open to closed conformation takes place

only upon binding of the correct nucleotide. This conforma-

tional change positions the 3V-OH and the dNTP for the

nucleophilic attack and thereby determines the rate of

phosphodiester bond formation [47–50]. After formation

of the phosphodiester, a conformational change slows

dissociation of the incorrect DNA products from Klenow

and in use of (exo+) Klenow, 3VY5V exonuclease activity

removes the incorrect base [51]. However, in pyrosequenc-

ing with (exo�) Klenow, the slower kinetic mechanism for

mismatch incorporation is exploited by the use of Apyrase

so that mismatch incorporation is efficiently eliminated [52].

2.3.2. ATP sulfurylase

The second reaction in pyrosequencing technology,

namely the production of ATP from PPi released upon

DNA polymerization, is catalyzed by ATP sulfurylase (E.C.

2.7.7.4). ATP sulfurylase is involved in vivo in sulfur
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activation by producing APS from ATP and SO4
2� [41]. The

produced adenosine phosphosulfate, APS, is further phos-

phorylated by APS kinase into adenosine 3V-phospate 5V-
phosphosulphate, PAPS, which is used for synthesis of

various sulfur containing compounds. The equilibrium of

the reaction catalyzed by ATP sulfurylase is naturally very

unfavorable for APS production but the removal of APS and

PPi by APS kinase and inorganic pyrophosphatase pulls the

reaction to the right [41]. Hence, being uncoupled, the ATP

Sulfurylase catalyzed reaction is favorable for ATP syn-

thesis from PPi and this is exploited in the second reaction in

the pyrosequencing technology (2).

ATP sulfurylase has been found in a broad range of

organisms such as yeast and filamentous fungi [41], spinach

leaf [53] and rat [54]. However, the first ATP sulphurylase

was cloned from the MET3 gene on chromosome X of

Saccharomyces cerevisiae yeast and this is currently the

only commercially available enzyme. This enzyme is a 315

kDa homo hexamer [41] that has been successfully

produced intracellularly in E. coli for use in pyrosequencing

technology [55].

2.3.3. Luciferase

Luciferase (E.C. 1.13.12.7) catalyses the light production

from ATP detected in pyrosequencing. Variants of the

enzyme are used for light production in all bioluminescent

organisms. The light emission from each species is

characterized by the color and the flashing pattern. The

color of the emitted light, which is determined by the active

site of the luciferase, varies between species from green

(kmax�543 nm) to red (kmax�620 nm). Moreover, each

beetle emits a distinct flashing pattern that is recognized by

the opposite sex of the species [56–60].

The most extensively used luciferase that first was cloned

and is the only commercial variant originates from the North

American firefly Photinus pyralis [57]. This luciferase is a

61 kDa enzyme which produces light in the green-yellow

region (550–590 nm) with an emission maximum at 562

nm at physiological pH [61]. The light production

performed by the P. pyralis luciferase is rather efficient

with 0.88 photons produced per luciferin molecule con-

sumed [62]. In the first luciferase-catalyzed reaction, the

enzyme undergoes a conformational change upon forming a

complex with d-luciferin in presence of magnesium ions

according to Eq. (3). Successively, light production takes

place through oxidative carboxylation of the luciferyl-

adenylate (Eq. (4)).

Since luciferase can produce light from dATP but no

other nucleotides, a modified A nucleotide, dATP-S, is used

instead of dATP in the pyrosequencing polymerization [10].

In pyrosequencing technology, the low thermostability of

luciferase limits the reaction temperature to 25 -C. Since the
temperature optimum for several other enzymes is higher, an

increased reaction temperature might shorten the analysis

time and decrease background signals. However, various

strategies have been used to increase the thermostability of
luciferase such as addition of stabilizing compounds [63,64]

and site-specific mutagenesis [65,66].

P. pyralis luciferase was originally purified from the

firefly tails but extensive isolation was required since

contaminant in the tails interfered with the light production

[67–72], After cloning of the gene, recombinant luciferase

production in E. coli has been performed [57,73]. By use of

gene fusion technology, purification tags such as protein A

[74,75] has enabled rapid purification as well as immobi-

lization of the enzyme on solid supports.

2.3.4. Apyrase

Apyrase (E.C. 3.6.1.5) is included in the pyrosequenc-

ing technology for degradation of unincorporated nucleo-

tides and excess ATP between base additions. Apyrases

and ecto-ATPases are E-type ATPases, a group of enzymes

different from other ATPases by several aspects. Most

important, their activity is dependent on divalent cations,

mainly Ca2+ or Mg2+ [76,77]. E-type ATPases play diverse

important roles in biological processes as modulation of

neural cell activity [78], prevention of intravascular

thrombosis [79,80], regulation of immune response [81],

protein glycolyzation and sugar level control [82] as well

as regulation of membrane integrity [83]. However,

apyrases differ from ecto-ATPases since they can hydrolyze

nucleoside tri-, di- and mono-phosphates and thus have

lower substrate specificity [77]. Apyrases have been

described in various animal tissues and organisms

[84,85]. However, the only commercially available

apyrases, which are the most extensively studied, originate

from potato tubers Solanum tuberosum. Several isoen-

zymes from different clonal varieties of S. tuberosum have

been isolated and characterized although the best known

are those of the Pimpernel and Desirée types [86]. The 2

apyrases have the same size (49 kDa) but different

isoelectric points, pI [76]. The most important characteristic

for use in pyrosequencing technology is the ratio between

ATP and ADP hydrolysis rates since a high ratio increases

the efficiency of nucleotide degradation [87]. Thus, since

the ratio is ten for apyrase from the Pimpernel and one for

that from Desirée, Pimpernel apyrase from S. tuberosum is

used in pyrosequencing.
3. Analytical performance

In order to increase the use of the pyrosequencing

technology platform, further improvements were made. One

problem addressed was the limited read length obtained.

The use of pyrosequencing technology is currently restricted

to analyses of short DNA sequences exemplified by

mutation detection [24–27] and single nucleotide poly-

morphism, SNP, analysis [17–20,22,23]. The factors limit-

ing read length in pyrosequencing can be divided into three

major groups: background sequence, plus and minus

frameshift [32]. However, to extend the use of the
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pyrosequencing technology to applications such as sequenc-

ing DNA libraries for gene identification, prolonged read

lengths are required for acquisition of sufficient amounts of

data.

3.1. SSB as a means for prolonging read length

E. coli single-stranded DNA binding protein, SSB,

stabilizes single stranded DNA, ssDNA, by binding to it

and thereby protecting it from degradation and formation of

secondary structures [88,89]. This property has been

exploited in several DNA applications [90–94] including

pyrosequencing [26,29,31,32,95,96] where the sequence

quality has been improved by addition of the protein. In

one study, a systematic effort was made to analyze the

positive effect of SSB on template with different character-

istics [32]. The template material used consisted of PCR

products from a cDNA library used in a transcript profiling

study where the pyrosequencing technology had been

compared to Sanger sequencing [32]. The read length in

pyrosequencing both with and without SSB was correlated

to the PCR product length (Fig. 2). Results from these

experiments show that the pyrosequencing read length is

dramatically increased by addition of SSB. Furthermore,

the sequence quality decreases with increasing PCR

product length (Fig. 2). In the following analysis, the

causes of low quality sequences from different templates

were characterized by thorough investigation of the pyro-

grams. The data show that the major limiting factor for

longer DNA templates (>600 bp) is background sequence

that occurs very early in the program, thereby limiting the

read length significantly. These background disturbances

are probably caused by primer mis-annealing and their

occurrence can efficiently be suppressed by SSB addition.
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Further polymerization of the template will not take place
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effect of SSB might be due disruption of secondary

structures in the ssDNA by SSB. Since shift phenomena

are sequence dependent, these problems occur on templates

of all length although the probability of finding homopoly-

meric stretches in a PCR product increases with the length
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templates, SSB decreases the limiting effects of all factors.

For longer templates, background sequence is completely

suppressed by SSB and longer reads are obtained. Since the

read length increases for these clones, other limiting factors

occur although for 50% of the clones, more than 25 bases

can be read from the pyrograms.

Attempts were made to increase the primer annealing

efficiency and thereby signal intensity through use of

elevated amounts of primer in the annealing reaction [32].
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with SSB

R products with and without SSB is shown. Samples with SSB in the

own as black circles. The plotted lines with (higher line) and without SSB
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ically reduced the read length. Inclusion of an extra

washing step after primer annealing partially relieved those

problems but the read length was still much lower than

when using less primer. These results show that SSB

addition is a simple and rapid measure to be taken for

obtaining a general improvement of sequence data quality.

Moreover, the attempts to increase primer annealing

efficiency indicate that non-hybridized ssDNA in solution

disturbs the pyrosequencing enzymes and impair their

performance.
4. Applications

An important feature of the pyrosequencing technique is

its ability to sequence at least 20 bases. This characteristic

allows numerous applications such as sequencing and

determining known as well as unknown polymorphic

positions, microbial typing and tag sequencing.

4.1. Scanning for undefined mutations

Detection of unknown mutations in known sequences is

normally denoted re-sequencing. However, pyrosequencing

has in most cases been used for re-sequencing of a few

number of selected hotspot codons [97–99] but in one

study the ability of using pyrosequencing for sequencing

exons 5 to 8 of the p53 gene has been investigated [26]. In

the study published by Garcia et al. [26], a set of

sequencing primers was designed to cover the 4 exons

of the p53 gene. Pyrosequencing was performed on an

amplified DNA template and overlapping sequences were

assembled to determine the sequence of the p53 gene. Two

forms of nucleotide dispensation strategies were used,

cyclic and programmed. In the cyclic dispensation strategy,

nucleotides were repeatedly added in the order A, G, T and

C while in the programmed strategy the order of

nucleotide dispensation was pre-defined according to the

wild type consensus sequence. The use of programmed

dispensation approach allows longer read length with

fewer primers, faster readout and less frame-shifts in the

determined sequence. Although using pyrosequencing in

re-sequencing permits detection of the mutation, non-

synchronized extension may appear in the sequence after

the polymorphic position, which generally yields non-

interpretable data. Nevertheless, the detected mutation can

readily be quantified and in the cases of heterogeneous

tumor material mutation signals as low as 10–20% may be

detected [24].

4.2. SNP genotyping

The problems with read-length and appearance of non-

synchronized sequences after a polymorphic position has

so far limited the use of pyrosequencing in re-sequencing

and detection of unknown mutations. However, if the
polymorphic position is known (e.g. single nucleotide

polymorphisms (SNPs)), the number of sequenced bases

usually does not need to exceed 4–10 bases and thus the

read-length of pyrosequencing does not become a limiting

factor. In addition, it is possible to use a programmed

nucleotide delivery to maintain synchronized extension of

alleles and thereby obtain high quality sequence peaks

even after the polymorphic position. This factor has

strongly contributed to associate the pyrosequencing

method with analysis of single nucleotide polymorphisms

(SNPs) [17,19,20,22,25,31,100,101]. A feature of pyrose-

quencing in typing SNPs is that each allele combination

(homozygous, heterozygous) confers a specific pattern

compared to the two other variants (Fig. 3). Thus, it is

rather easy to score the allelic status by pattern recognition

software. Even here, two different orders of nucleotide

additions, cyclic and sequential (programmed), may be

tried. In both cases, SNP determination starts with analysis

of nucleotide(s) preceding the investigated position. This

step serves as a positive control of the amplification

process as well as calibration of peaks and reaction

conditions. The advantage of using cyclic addition of

nucleotides is that it results in three distinctive patterns at

the polymorphic sites due to non-synchronized extensions.

This is also a unique feature of this technology, which

allows haplotype determination when two or more SNPs

are in vicinity of each other [24,102]. In contrast, the

sequential nucleotide addition generates differences in

three peak positions and is designed so that the individual

allele extensions are in phase. Thereafter, further nucleo-

tide additions will give the consensus sequence of the

target and can improve raw data interpretation.

4.3. Bacterial genotyping

The identification of bacterial strains usually involves

sequencing of the 16S rRNA gene. The 16S rRNA gene

(16S rDNA) contains highly conserved regions that are

flanking variable and species specific sequences [103].

Several studies have reported the usefulness of pyrose-

quencing technology for bacterial typing by sequencing the

variable region of the 16S rRNA gene. The typing involves

a nucleic acid amplification using universal primers

targeting the conserved sequences and sequencing of the

flanking variable region by one of the amplifying primers.

Monstein et al. [28] employed the technique to identify and

subtype variable V1 and V2 regions of Helicobacter pylori.

The same group pyrosequenced 16S rRNA to distinguish

pathogenic bacteria from commensals or saprophytic

bacteria found in the same habitat [104] and to identify

contaminated bacteria in industrial water systems. However,

in order to distinguish closely related bacterial strains by

pyrosequencing, longer read-lengths may be necessary. To

overcome the read-length limitation in 16S rRNA studies,

Gharizadeh et al. [105] suggest the use of multiple group-

specific sequencing primers. In this approach, a pool of



C   T    G    T   A   C    A

C   T    G    T   A   C    A

C   T    G    T   A   C    A

C    T    G    T    A    C    A

5’-GTTTTCTGTTGTAAATGCC[T/G]TTTACAAA

3’-………………CAAAAGACAACATTTACGG[A/C]AAATGTTTGTAACT……………-5’

Fig. 3. Analysis of single nucleotide polymorphisms (SNPs) by pyrosequencing. The amplified target DNA (indicated by black letters) is primed by a

sequencing primer (green letters). Pyrosequencing (red letters) is initiated by incorporation of a C nucleotide (serving as calibration of signals) and the order of

nucleotide addition after this nucleotide is T-G-T-A-C-A. The polymorphic position in this case is situated after the first incorporated nucleotide and is a T to G

substitution. This order of nucleotide addition renders three distinct pyrosequencing patterns (one for each genotype). The raw data (right) is then compared to

theoretical patterns (left) and the genotype can easily be assessed.
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pyrosequencing primers is added but only one of the

primers hybridizes to the template and functions as

sequencing primer. The hybridized primer from the pool

is specific for a semi-conservative region and enables

primer hybridization closer to a variable region leading to

‘‘win of read-length’’.

4.4. Viral genotyping

The pyrosequencing technology has been employed in

genotyping of viruses with heterogeneous sequences. In an

early report, O’Meara et al. [29] investigated the feasibility

of using pyrosequencing as a genotyping tool to characterize

the presence of drug resistance mutations in protease

inhibitors (PIs) of human immunodeficiency virus type 1

(HIV-1). The study included use of 12 pyrosequencing

primers to cover 33 codons that are implicated in 52 drug

resistance mutations. Gharizadeh et al. [106] used pyrose-

quencing for genotyping of human papillomaviruses (HPV)

that are believed to be the major cause of cervix cancer.

Since more than 100 HPV types with extreme heteroge-

neous sequences are reported to exist, the amplification

needs to be carried out on semi-conservative regions by the

use of degenerative general primers and the pyrosequencing

is performed by one of these PCR primers. However, the use

of a PCR primer as pyrosequencing primer causes difficul-

ties when unspecific amplifications occur. In addition,

occurrence of clinically important multiple HPV types are

quite common and in these cases, mixed sequence peaks

make the analysis very difficult. In a later publication [107],

the authors suggest the use of a pool of 4 type-specific

primers (4 clinically interesting HPV types) to avoid

problems associated with unspecific PCR fragments. Never-

theless, the specific typing will require special ‘‘pattern

recognition’’ software or separate sequencing reactions for
each of the 4 type-specific primers, if the sample comprises

more than one HPV type of interest. Other applications of

pyrosequencing involve genotyping of hepatitis C virus

(HCV) [108,109] and hepatitis B virus (HBV) [110].

4.5. Tag sequencing

Expressed sequence tag (EST) sequencing has had an

enormous influence on expression profiling and identification

of differentially expressed genes that have not been present in

databases. It has been proposed that short gene specific

nucleotide sequence tags (approximately 8–13 bases) should

give sufficient information to identify a transcript [111].

However, to uniquely identify a transcript, longer read-length

than 8–13 bases may be needed and thus pyrosequencing can

be an alternative method. In two studies, the feasibility of

pyrosequencing for tag sequencing has been investigated

[32,95]. In both reports an average read length of 25–30 bases

was achieved, demonstrating the reliability of the technique to

uniquely identify transcripts in complex organisms.
5. Future

The pyrosequencing technology is currently used in 96 or

384 plate format but to be a high throughput technology, an

improved sample capacity would be beneficial. One way of

doing this would be to use micromachined filter-chamber

arrays where parallel analyses of nano-liter samples can be

monitored in real-time. In this experimental setup, the DNA

sample is immobilized on beads trapped in a filter chamber

that allows for injection of solutions into the chamber and

transport through the cell to the outlet. Microfluidic systems

containing several parallel chambers have been produced.

Moreover, SNP analysis by the use of pyrosequencing
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chemistry has been performed in filter-chamber systems

[112,113]. However, since the filter chamber allows passage

of all pyrosequencing enzymes through the chamber, the

light produced in the SNP analysis was detected in the

sample outlet. This lack of light localization within the

chamber is a great disadvantage since only one analysis can

be run at the time and the light signal becomes diluted. This

problem has been addressed by designing a strategy in

which the luciferase was genetically fused to a DNA

binding domain (Klenow or SSB) and purification handle

(Zbasic) that could specifically be removed by enzymatic

cleavage [114] (Fig. 4). After purification the fusion

proteins were analyzed by complete extension using

pyrosequencing chemistry. In these experiments, paramag-

netic beads with attached ssDNA to which a primer had

been annealed were incubated with the fusion proteins,

Zbasic-SSB-Luciferase, SSB-Luciferase, Zbasic-Klenow-

Luciferase and Klenow-Luciferase, respectively. The pro-

teins were allowed to bind the immobilized DNA and free

protein was removed. A pyrosequencing mixture devoid of

Luciferase and in the case of Klenow fusions also lacking

Klenow, was added to the beads. The mixture contained all

four nucleotides so that, DNA synthesis would take place on

the primed template in presence of polymerase and resulting

in light emission in case of luciferase activity. All tested

proteins bound selectively to the immobilized DNA and
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Fig. 4. (A) A schematic overview of the principle of using DNA-anchoring proteins

Thereafter the fusion protein is added, comprising of a DNA-anchoring part (Kleno

all other needed enzymes and nucleotides are added (3) and following primer exte

assay performed on DNA immobilized on magnetic beads is shown. The x-axis tim

Reactions where all four fusion proteins have been incubated with DNA-free be

colored blue.
their enzymatic domains were active. These results promis-

ingly suggest that with more sophisticated detection

systems, such as a highly sensitive CCD camera, these

proteins could by used on miniaturized formats such as

nano-liter filter chamber or ultimately on DNA microarrays.

Alternatively, these fusion proteins may be employed in

another microfluidic format introduced by 454 Life Sciences

(http://www.454.com). Based on the pyrosequencing chem-

istry and the use of thousands of pico-liter wells on a

PicoTiter Plate, 454 Life Sciences has created a massively

parallel sequencing system that claims to be able to

sequence 10 Mbp genomes.
6. Concluding remarks

Pyrosequencing is a DNA sequencing technology based

on real-time detection of DNA synthesis monitored by

bioluminescence. Four enzymes are exploited by the

technology and a fifth protein, SSB, can be included to

enhance the quality of the obtained sequences and thereby

prolong the read length. The pyrosequencing technology has

been used in a broad range of applications such as SNP

genotyping, de novo mutation detection, gene identification

and microbial genotyping. We believe that the pyrosequenc-

ing technology possesses several unique features which
5 6

2

for pyrosequencing. First the template is immobilized on a solid matrix (1).

w (orange) or SSB (light blue)) and the luciferase (yellow). In the third step

nsion measurable light will be produced. (B) A complete primer extension

e in seconds and the y-axis denotes measured light signal in arbitrary units.

ads is shown as curves parallel to the x-axis. The purification tag Zbasic is

http://www.454.com


A. Ahmadian et al. / Clinica Chimica Acta 363 (2006) 83–9492
make this technique advantageous compared to other

sequencing methods in a number of applications. In order

to further expand the field of utility, increased throughput

and sequence read length as well as the use of smaller

reagent volumes are necessary and are currently developed.

This amelioration of the technology very promisingly shows

that the competitiveness of pyrosequencing is likely to

increase in the future.
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