

11. What tools are available to help me understand protein structures?

1

column. The component waves, each with proper phase and amplitude, are on the left. The curves on the right show the successive superposition of the five waves on the left. (From Waser, 1968.)

Solving the phase problem by "Molecular Replacement".

If an approximate model of the protein structure is known in advance, approximate phases can be guessed, and the unknown parts of the structure can be calculated in an iterative procedure.

No heavy atom derivative required.

BUT – need starting model and orientation (rotation and translation)

For example, molecular replacement can be used to determine the structure of an complex with inhibitor bound to an enzyme active site, if the structure of the enzyme itself is already known. Also, MR is often used to solve the structures of closely related proteins in a superfamily.

and Native Data S	lection an its of Alt	of Process an	ing Statis	tics for th	e MAD		
	MAD I	MAD 2	MAD 3	MAD 4	nativy		
λ (A) resolution (Å)	0.9788	0.9790	0.9562	0.9809	0.9160		
to, of atlections observed > La	432376	446744	431524	336135	771660		
to, of unique reflections = lar	35817	37596	36620	36242	67292		
R _{map} ⁴ (%) completences(%) (Fe)	6.9 91.8 30.3	6.4 95.8 34.3	5.1 92.1 41.6	3.7 92.1 50.9	6.0 (67.2) 99.3 (95.6) 34.5 (2.6)		
$R_{\rm stops} = \sum I_{\rm cho} $	$-I_{eg} \Sigma$	Keyl			Table	2 Final Refinement Statistics for Aleas	a at 1.9 A Resolut
						R factor ⁴ (%) R _{box} (%) (for 1747 reflections) scores R factor (Λ^{2} ²)	20,4 25,4
	Juke	60m) 360, AC	ACT 1447		- 663 -	man chain	25.5
The 1.9 A City-tral Stru Contain	rhate of Ala 1 a Conserve	nine Racon of Entryway	into the A	a tuberesiinan	side choin PLP waters	31.5 21.9 32.4	
	(but keep the	Associated Unitshing	Annal, 7 Malhar	1.1 String? is	and M. Stager,"	true deviations	0.000
Parts (Dispared, Instan	and the state	out of Santa .)	Danies, Dogo T	New of Holizan	bond angles (dog) no. of orthoctions >20	2,9	
Parts (Abigures) Jonia Department of Bolige and B Stress 4 and Encourses, Call Safers of Material Jonites of Material	an Balena Alina Alina coli of Balena mot, Organization	of the second second	pat 162, Karib Ca se c'oligge of No	drive (Passive)	loga Pitta	no. of residues	722

Analyza structure (Domeshandren Dlat) and bioshamister
Analyze – su ucture (Kamachanur an Flot) and biochemistry
Publish in leading biochemical or structural biology journal
Contribute results (coordinates, etc.) to PDB

Data Mining
Visualization programs (Cn3D / RasMol / SwissPDBV / etc)
SCOP – Structural Classification of Proteins
CATH – Classification / Arch / Topology

SCO	P Structural	Classifica	ation of Protein	ns			
uctural Classificati	ion of Proteins						
₿₽?	Scop Classification Statistics						
	17406 PDB Entries (1 Sept	amh ar 2002). 4432	27 Domaine, 28 Literature 5 d theoretical models)	deferences.			
Г	17406 PDB Entries (1 Sep (excluding Class	amb er 2002), 4432 mucleic anids an Number of falds	17 Domains: 28 Literature F d theoretical models) Number of superfamilies	Number of families			
ľ	17406 PDB Entries (1 Sept (excluding Class Al olpha proteins	amb er 2002). 4432 gnucleic anids an Number of folds 1.51	17 Domaine 28 Literature F d theoretical models) Funder of superfamilies 237	Number of families			
	17406 PDB Entries (1 Sept (eccluding Class All sipha proteins All beta proteins	ember 2002). 4432 mucheir enids an Number of falds 1.51 1.11	17 Domains 28 Literature 6 d theoretical models) Plander of superfamilies 237 213	Number of families 409 382			
	17406 PDB Entries (1 Sup Class All sights proteins All bets proteins All bets proteins (a/b)	ember 2002) 4432 process: acids an Number of folds 131 111 117	17 Domains 28 Literature F d theoretical models) Disorber of superfacellies 207 213 190	Number of families 409 382 467			
	27406 PDB Entries (1 Sup (sectuding Class All spins proteins All bria proteins All bria proteins (a/b) Alpha and beta proteins (a/b) Alpha and beta proteins (stit)	Innh er 2002) 4402 procteic acids an Number of folds 1.51 1.11 1.17 2.12	Promains 28 Literature 5 d theoretical models) Provider of superfacelilies 277 213 190 308	Number of families 409 362 467 488			
	Class Class Al ophin proteins Al beta proteins Alpha and beta proteins (a/b) Adpha and beta proteins (a/b) Multi-domain proteins (a+b) Multi-domain proteins	amb or 2002) 4432 g nucleic anids an 151 111 117 213 39	17 Domains 28 Literature 5 d theoretical models) Plander of superfacellies 217 213 190 318 39	Number of families 409 362 467 488 52			
	Class Class All alpha proteins All beta proteins All beta proteins (a/b) Alpha and beta proteins (a/b) Alpha and beta proteins (a/b) Melti-domain proteins Menforme and cell surface proteins	Interference 2002) 4432 muchair acids an 151 111 1117 2112 39 12	Promine 28 Literature E d theoretical models) Provoker of superflucibles 277 213 190 308 39 19	Number of families 409 362 467 488 52 34			
والمراجع حاجات	Class Class Class All sights proteins All bets proteins Alpha and bets proteins (a/b) Alpha and bets proteins (a/b) Multi-domain proteins Methorane and real surface proteins Methorane and real surface proteins Sault proteins	Instead of the second s	17 Domains 28 Literature E d theoretical models) 257 213 190 308 39 19 84	Number of families 409 362 467 488 52 34 128			

CATH - Protein Structure Classification

CATH is a novel hierarchical classification of protein domain structures, which clusters proteins at four major levels: Class (C), Architecture (A), Topology (T), and Homologous (H) Superfamily

Class, derived from secondary structure content, is assigned for more than 90% of protein structures automatically. Architecture, which describes the gross orientation of secondary structures, independent of connectivities, is currently assigned manually. The topology level clusters structures according to their topological connections and numbers of secondary structures. The homologous superfamilies cluster proteins withhighly similar structures and functions. The assignments of structures to toplogy families and homologous superfamilies are made by sequence and structure comparisons.

