X-Ray Crystallography

"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

Topics:

1. Protein Data Bank (PDB)

Data mining and Protein Structure Analysis Tools

2. Image Formation

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

3. X-Ray Crystallography (after NMR)

- a) Crystal Growth Materials / Methods
- b) Crystal Lattices Lattice Constants / Space Groups / Asymmetric Unit
- c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
- d) Theory of Diffraction Bragg's Law / Reciprocal Space
- e) Data Collection Methods / Detectors / Structure Factors
- f) Structure Solution Phase Problem: MIR / MR / MAD
- h) Refinements and Models
- i) Analysis and presentation of results

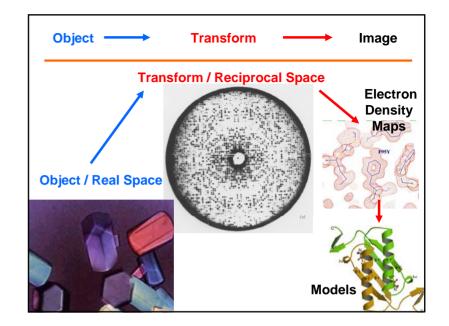
X-Ray Crystallography

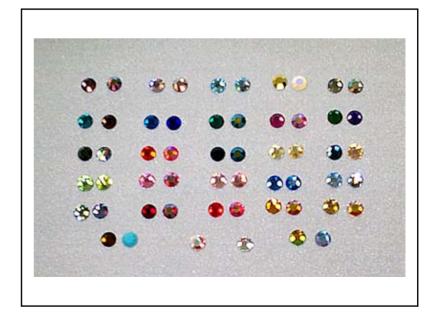
"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

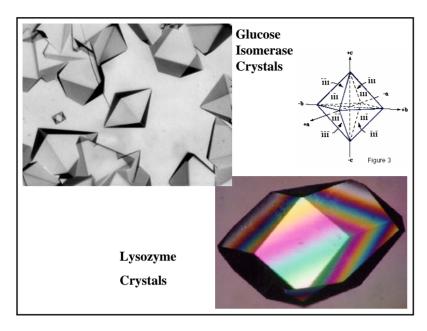
Topics:

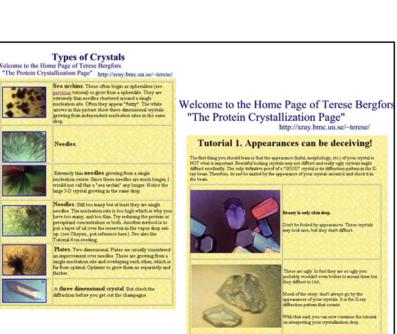
1. Protein Data Bank (PDB)

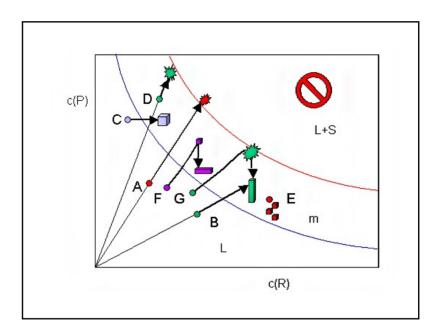
Data mining and Protein Structure Analysis Tools


2. Image Formation


Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)


3. X-Ray Crystallography (after NMR)


a) Crystal Growth - Materials / Methods


- b) Crystal Lattices Lattice Constants / Space Groups / Asymmetric Unit
- c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
- d)Theory of Diffraction Bragg's Law / Reciprocal Space
- e) Data Collection Methods / Detectors / Structure Factors
- f) Structure Solution Phase Problem: MIR / MR / MAD
- h) Refinements and Models
- i) Analysis and presentation of results

Variables that influence crystal growth

- 1. Nature of macromolecule Purity and concentration of macromolecule
- 2. Nature and concentration of precipitant
- 3. pH / Temperature / Pressure
- 4. Level of reducing agent or oxidant
- 5. Substrates, coenzymes, and ligands / Metal ions
- 6. Preparation and storage of macromolecule / Proteolysis and fragmentation
- 7. Age of macromolecule / Degree of denaturation
- 8. Vibration and sound
- 9. Volume of crystallization sample
- 10. Seeding
- 11. Amorphous precipitate
- 12. Buffers
- 13. Cleanliness
- 14. Organism or species from which the macromolecule was isolated
- 15. Gravity, gradients and convection

Common Compounds used in Crystallization

Ammonium or sodium sulfate

Sodium or ammonium citrate

Sodium or ammonium acetate

Magnesium sulfate

Cetyltrimethyl ammonium salts

Polyethylene glycol 400, 1000, 4000, 6000, 15,000 (now also 2,000, 8,000, etc.)

Methods for protein crystallization

Batch crystallization (simply dump reagents together)

Liquid-liquid diffusion in a capillary tube

Vapor diffusion-the most successful method (hanging drop, sitting drop), typically using a Limbro plate. Equilibration occurs between the liquid and vapor phase.

Dialysis

Hanging Drop Method - Crystal Screening

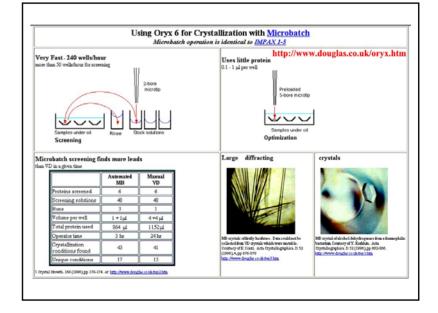
The Experimental Setup

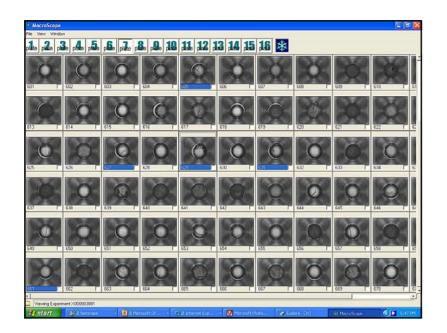
In order to obtain a crystia, the protess molecules must assemble into a personic lattice. One starts with a solution of the proteins with a finity high concentration (2. 9) may be a supplied and after acquires that release the solubility of one to proteinsonic specialisation. By allow further concentration, and under conditions matable for the formation of a few muclestion sites, small crystals was yet at to gow. Often very many conditions have to be tried to succeed. This is unsaily done by initial accessing, followed by a systematic confination of conditions Crystals should be a few testal for a man sent direction to be useful for diffraction experimental crystals.

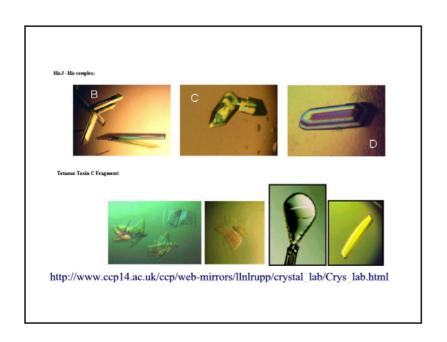
Right: The hanging drop technique. Center: 24 such hanging drop experiments are set up in a Linboo plate. Right: A lot of different screening solutions, a set-up Linboo plate, dialysis buttons and a mirro batch plate behind a goniometer head.

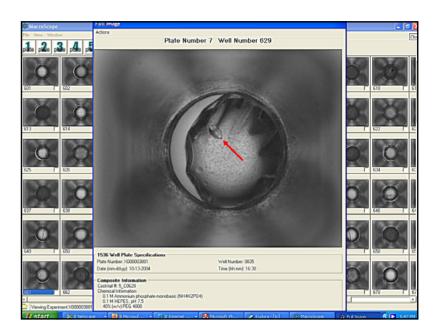
The most common setup to grow protein crystals is by the hanging drop technique: A few microliters of protein solution are mixed with an about equal amount of reservoir solution conducting the precipitants. A drop of this matter is put on a glass side which covers the reservoir. As the protein/precipitals matter in the drop is a less concentrated than the reservoir solution (seminodir evaluation in the contract of the protein protein

Hampton Crystal Screen Solutions


...


Note:




- · a nice list of detergents commonly used in crystallization experiments.
- pretty picture:
- CRYSTOOL efficient random screen made for you here on the WEB

Tube #	SALT	BUFFER	Precipitant	Miniscreen	Tube #
1	0.02M Calcium Chloride	0.1 M Na Acetate pH 4.6	30% w/v 2-methyl-2,4-pentanediol	Y	1
2	None	None	0.4M K,Na Tartrate tetrahydrate		2
3	None	None	0.4M Ammonium dihydrogen phosphate		3
4	None	0.1M Tris-HCl pH 8.5	2.0M Ammonium Sulfate	Y	4
5	0.2M tri-sodium citrate	0.1M Na HEPES pH 7.5	30% w/v 2-methyl-2,4-pentanediol		5
6	0.2M Magnesium chloride	0.1M Tris-HCl pH 8.5	30% w/v PEG 4000		6
7	None	0.1M Na Cacodylate pH 6.5	1.4M Sodium acetate trihydrate		7
8	0.2M tri-sodium citrate	0.1M Na Cacodylate pH 6.5	30% v/v 2-propanol		8
9	0.2M Ammonium acetate	0.1M Na Citrate pH 5.6	30% w/v PEG 4000	Y	9
10	0.2M Ammonium acetate	0.1 M Na Acetate pH 4.6	30% w/v PEG 4000	Y	10
11	None	0.1M Na Citrate pH 5.6	1.0M Ammonium dihydrogen phosphate		11
12	0.2M Magnesium chloride	0.1M Na HEPES pH 7.5	30% v/v 2-propanol		12
13	0.2M tri-sodium citrate	0.1M Tris-HCl pH 8.5	30% v/v PEG 400		13
14	0.2M Calcium Chloride	0.1M Na HEPES pH 7.5	28% v/v PEG 400	Y (best)	14
15	0.2M Ammonium acetate	0.1 M Na Cacodylate pH 6.5	30% w/v PEG 8000		15
16	None	0.1M Na HEPES pH 7.5	1.5M Lithium sulfate monohydrate	Y	16
17	0.2M Lithium sulfate	0.1M Tris-HCl pH 8.5	30% w/v PEG 4000	Y (2nd best)	17

X-Ray Crystallography

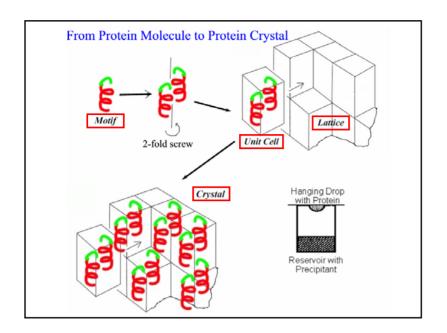
"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

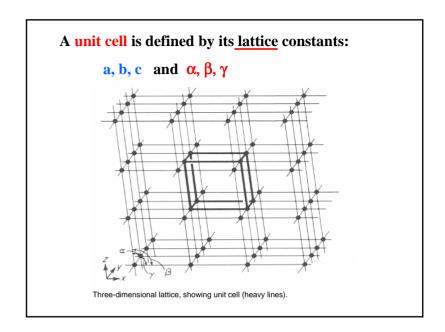
Topics:

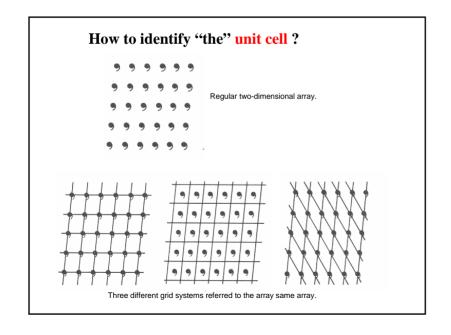
1. Protein Data Bank (PDB)

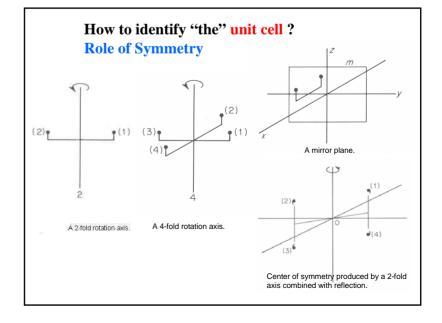
Data mining and Protein Structure Analysis Tools

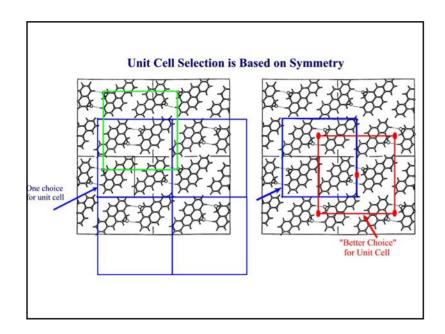
2. Image Formation

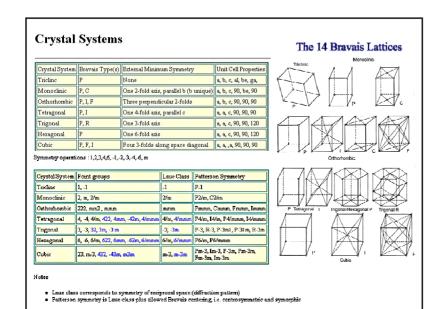

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

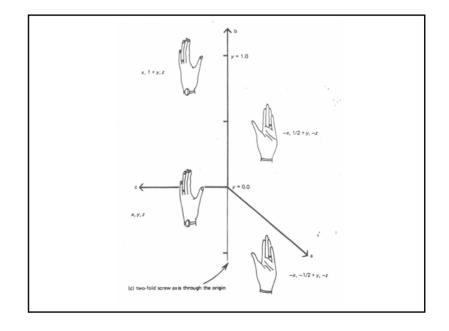

3. X-Ray Crystallography (after NMR)

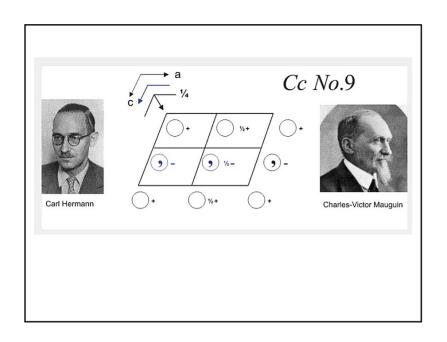

a) Crystal Growth - Materials / Methods

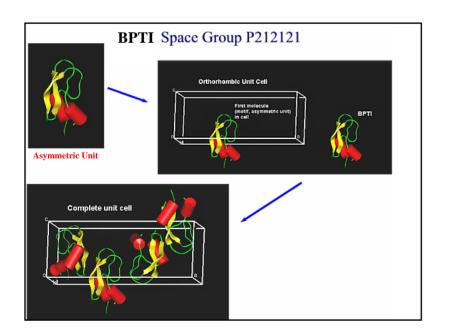

b) Crystal Lattices - Lattice Constants / Space Groups / Asymmetric Unit

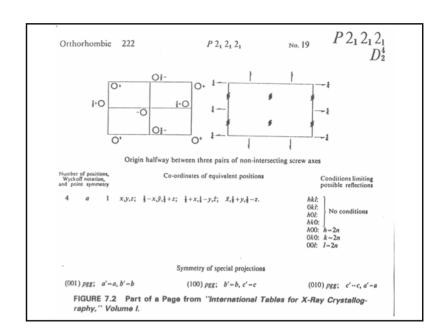

- c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
- d)Theory of Diffraction Bragg's Law / Reciprocal Space
- e) Data Collection Methods / Detectors / Structure Factors
- f) Structure Solution Phase Problem: MIR / MR / MAD
- h) Refinements and Models
- i) Analysis and presentation of results






The Fourteen Bravais Lattices


There are fourteen distinct space groups that a <u>Brayais</u> lattice can have. Thus, from the point of view of symmetry, there are fourteen different kinds of <u>Brayais</u> lattices. <u>Auguste Brayais</u> (1811-1863) was the first to count the categories correctly.



System	Point Group			Space	Group			Fraction
Triclinic	1	Pī Pī						1/2
Monoclinic	2	P2	P2,	C2				1/4
	.ms	Pm	Pc	Cm	Ce			
	2/m	P2/m	P2 ₁ /m	C2/m	P2/c	P2 ₁ /c	C2/c	
Orthorhombic	222	P222 F222	P222, F222	P2,2,2 I2,2,2,	P2,2,2,	C222,	C222	1/8
	mm2	Pmm2	Pmc2 ₁	Pcc2	Pma2	Pca2,	Pnc2	
		Pmn2,	Pba2	Pna2,	Pnn2	Cmm2	Cmc2 ₁	
		Cee2	Amm2	Abm2	Ama2	Aba2	Firmm2	
		Fdd2	Imm2	Iba2	Ima2	_	_	
	AND PERSONS	Present	Pana	Poom	Phan	Pmma	Pnna	
		Proma Proma	Peca Phon	Phon Phon	Poon Prima	Phem Cmcm	Pnnm Cmca	
		Cmmm	Cccm	Cmma	Cooa	Framm	Fddd	
		Immm	Ban	Ibca	Imma	2-Manual	Pass	
Tetragonal	4 4	P4 P4	P4, 14	P42	P4 ₃	14	14,	1/8
	4/m	P4/m	P4 ₃ /m	P4/n	P42/n	I4/m	14,/a	
	422	P422 P4,22	P42,2 P4,2,2	P4,22 I422	P4,2,2 I4,22	P4,22	P42212	1/16
	4 mm	P4mm	P4bm	P4.cm	P4 ₂ nm	P4cc	P4nc	
		P4,mc	P4,bc	I4mm	14cm	14, md	I4,cd	
	42 m	P42m	P42c	P42.m	P42,c	P4m2	P4c2	
		P462	P4n2	14 m2	14c2	142m	1424	
	4/mmm	P4/mmm	P4/mcc	P4/nbm	P4/nnc	P4/mbm	P4/mnc	
		P4/nmm	P4/ncc	P4 ₂ /mmc	P4 ₂ /mcm	P4 ₂ /nbc	P4 ₂ /nnm	
		P4 ₂ /mbc	P4 ₂ /mnm	P42/nmc	P42/ncm	I4/mmm	14/mcm	
		I4,/amd	I4,/acd					
Trigonal/rhombohedral	3	P3	P3,	P32	R3			1./6
		P3	R3					
	32	P312 R32	P321	P3,12	P3,21	P3 ₂ 12	P3221	1/12
	3.m	P3m1	P31m	P3c1	P31c	R3m	R3c	
	3 m	P31m	P31c	P3m1	P3c1	R3m	R3c	
Hexagonal	6 6	P6	P6,	P6,	P62	P64	P6 ₃	1/12
	6/m	P6 P6/m	P6 ₂ /m					
	622	P622	P6,22	P6,22	P6,22	P6,22	P6,22	1/24
	622 6mm	P622 P6mm	P6cc	P6,22 P6,cm	P6 ₂ zz P6 ₂ mc	2.0455	20322	17.74
	ōm2	Põm2	Põc2	P62m	P62c			
	6/mmm	P6/mmm	P6/mcc	P6 ₃ /mcm	P6 _u /mmc			
Cubic	23	P23	F23	123	P2,3	12,3		1/24
	m3	Pm3	Pn3	Fm3	Fd3	Im3	Pa3	
		Ia3						
	432	P432	P4232	F432	F4,32	I432	P4,32	1/48
		P4,32	14,32					
	43.m	P43m	F43m	143 m	P43 n	F43c	143d	
	m3m	Pm3.m	Pn3n	Pm3n	Pn3.m	Fm3m	Fm3c	
		Fd3m	Fd3c	Im3m	Ia3d			

CRYSTAL SYSTEM	LAT- TICE	MINIMUM SYMMETRY OF UNIT CELL	UNIT CELL EDGES AND ANGLES ^a	DIFFRAC- TION PAT- TERN SYM- METRY ^b	SPACE GROUPS
Triclinic	P	None	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	ī	P1
Monoclinic	$_{C}^{P}$	2-fold axis parallel to b	$a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}$ $\beta \neq 90^{\circ}$	2/m	P2, P2 ₁ C2
Orthorhombic	P C I F	3 mutually perpendicular 2-fold axes	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	mmm	P222, P2,2,2, P222, P222, P2,2,2 C222, C222, [1222, 12,2,2,] F222
Tetragonal	I	4-fold axis parallel to e	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	4im 4immm	P4, (P4 ₁ , P4 ₃), P4 ₂ I4, I4 ₁ P422, (P4 ₁ 22, P4 ₂ 22), P4 ₂ 22 P42 ₁ 2, (P4 ₁ 2 ₁ 2, P4 ₂ 2 ₁ 2), P4 ₂ 2 ₁ 2 I422, I4,22
Trigonal/rhombohedral	R^d P^d	3-fold axis parallel to c	$a = b = c$ $\alpha = \beta = \gamma \neq 90^{\circ}$	3 3 <i>m</i>	R3 P3, (P3 ₁ , P3 ₂) R32 [P321, P312] [(P3 ₁ 21, P3 ₂ 21), (P3 ₁ 12, P3 ₂ 12)]
Hexagonal	P	6-fold axis parallel to e	$a = b \neq c$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$	6/m 6/mmm	P6, (P6 ₁ , P6 ₃) P6 ₃ , (P6 ₁ , P6 ₄) P622, (P6 ₁ 22, P6 ₅ 22) P6 ₃ 22, (P6 ₆ 22, P6 ₆ 22)
Cubic	P I	3-fold axes along cube diagonals	$\begin{array}{c} a=b=c\\ \alpha=\beta=\gamma=90^{\circ} \end{array}$	m3	P23 P2 ₁ 3 [123, 12 ₁ 3]
	F			m3m	F23 P432, (P4 ₃ 32, P4 ₂ 32) P4 ₂ 2 I432, I4 ₃ 32 F432, F4 ₃ 32

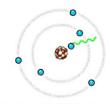
X-ray tubes: the "sealed" tube Focal spot viewed from side Se window Focal spot viewed from end Anode foce (c) Figure 1.5. (a) Section along the axis of an X-ray tube. (b, Anode with focal spot viewed from side. (c) Focal spot viewed through tube window.

X-Ray Crystallography

"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

Topics:

1. Protein Data Bank (PDB)


Data mining and Protein Structure Analysis Tools

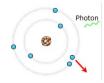
2. Image Formation

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

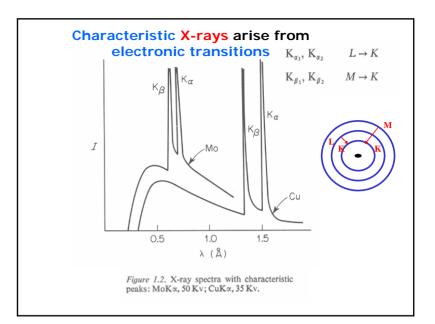
- 3. X-Ray Crystallography (after NMR)
 - a) Crystal Growth Materials / Methods
 - b) Crystal Lattices Lattice Constants / Space Groups / Asymmetric Unit
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d) Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

Origin of Non-characteristic X-rays

The electron (much lighter than the nucleus) comes very close to the nucleus and the electromagnetic interaction causes a deviation of the trajectory where the electron looses energy and an X-ray photon is emitted.

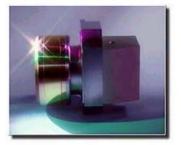

Bremsstrahlung X-rays

In an X-ray tube the electrons emitted from the anode are accelerated towards the metal target cathode by accelerating voltage of typically 50 kV. The high energy electrons interact with the atoms in the metal target. Sometimes the electron comes very close to a nucleus in the target and is deviated by the electromagnetic interaction. In this process, which is called bremsstrahlung (braking radiation), the electron looses much energy and a photon (X-ray) is emitted. The energy of the emitted photon can take any value up to a maximum corresponding to the energy of the incident electron.


Origin of characteristic X-rays Characteristic X-ray Lines The high energy electron can also cause an electron close to the nucleus in a metal atom to be knocked out from its place. This vacancy is filled by an electron further out from Related Laureate the nucleus. The well defined difference in binding energy, The Nobel Prize in characteristic of the material, is emitted as a Physics 1917 - Charles monoenergetic photon. When detected this X-ray photon gives rise to a characteristic X-ray line in the energy Glover Barkla » spectrum. C. Barkla observed these lines in 1908-09 and was given the 1917 Nobel Prize for this discovery. He also made the first experiments suggesting that the X-rays are electromagnetic waves. Photon

Characteristic X-rays have defined λ

Table 1.1. Target Materials and Associated Constants


	Cr	Fe	Cu	Mo
Z	24	26	29	42
α_1 , Å	2.2896	1.9360	1.5405	0.70926
α_2 , Å.	2.2935	1.9399	1.5443	0.71354
ā,* Å	2.2909	1.9373	1.5418	0.71069
β_1 , Å	2.0848	1.7565	1.3922	0.63225
β , filt.	V, 0.4 mil†	Mn, 0.4 mil	Ni, 0.6 mil	Nb, 3 mil
α, filt.	Ti	Cr	Co	Y
Resolution, Å	1.15	0.95	0.75	0.35
Critical potential, kV	5.99	7.11	8.98	20.0
Operating conditions, kV:	30-40	35-45	35-45	50-55
half- or full-wave- rectified, mA	10	10	20	20
constant potential, mA	7	7	14	14

^{*} $\bar{\alpha}$ is the intensity-weighted average of α_1 and α_2 and is the figure usually used for the wavelength when the two lines are not resolved.

FR591 Rotating Anode X-ray Generator

The Nomins' FES91 rotating anode X-say generator now has dramatically improved the performance of the anode, by a complete redesign.
We now have a static shaft and a rotating anode, instead of rotating both. The cooling water flow has also been redesigned to give much higher throughput, higher flow and higher tollowince, which result in better best underfie and hence better cooling espects.

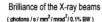
Now with the new ULTRA anode you can get 6 kW on a $0.3 \mathrm{mm}$ focus!

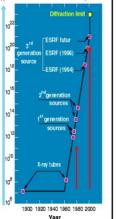
^{† 1} mil = 0.001 inch = 0.025 mm.

"X-ray" Sources: Beyond X-ray tubes

The brilliance of a light source is defined as the number of photons emitted per second, per unit source size, per unit space angle and for a bandwidth of 1/1000 of the photon energy

The Comparison between various sources of X-rays shows large differences in their brilliance

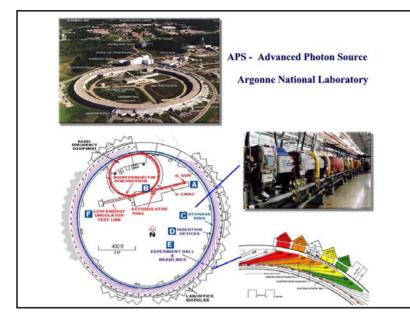

Wilhelm Conrad Röntgen discovered X-rays in 1895 whilst working with cathode-ray tubes. Using the principle of fast electrons hitting a metallic target, a first substantial gain in brilliance was not obtained until the introduction of rotating anode sources (~1960)

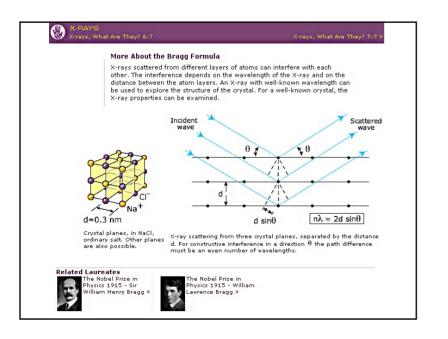

Synchrotron Radiation Facilities:

The progress of high energy physics, with the construction of powerful particle accelerators gave birth to what we now call First generation synchrotron sources (~1970). Using the deflection of high energy electrons by a magnetic field for the production of X-rays proved so promising that a number of dedicated Second generation sources were built (~1980). Relying on the combination of needle thin electron beams and Insertion Devices, Third generation synchrotron sources (~1995) are now emitting synchrotron X-ray beams that are a trillion (10¹²) times more brilliant than those produced by X-ray

Free Electron X-ray Lasers:

Coupling electron and X-ray beams together, the Free Electron X-ray Lasers currently on the drawing boards could be the next generation of X-ray sources. While they promise to achieve an increase in peak brilliance by another factor of a trillion, the first prototypes may be operational around the year 2010


Another Source of "X-rays" Synchrotron Radiation X-ray photons can also be created under different conditions. When physicists were operating the first particle accelerators, they discovered that electrons can produce photons without colliding at all. This was possible because the magnetic field in the accelerators was causing the electrons to move in large spirals around magnetic field lines of force. This process is called synchrotron radiation. In the cosmos particles such as electrons can be accelerated to high


energies- near the speed of light- by electric and magnetic fields. These highenergy particles can produce synchrotron photons with wavelengths ranging from radio up through X-ray and gamma-ray energies.

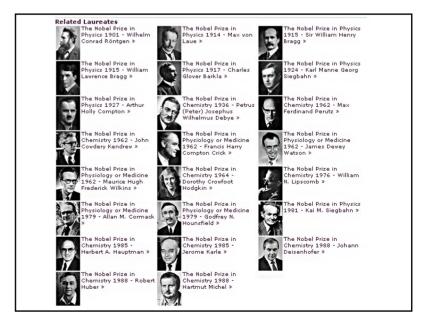
Synchrotron Radiation: Electrons moving in magnetic field radiate photons.

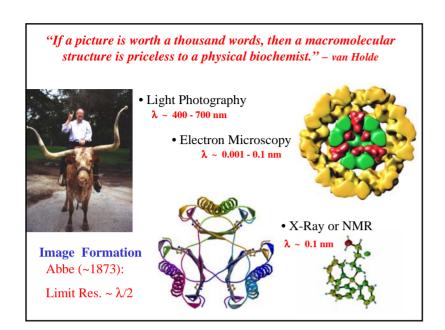
How synchrotron light is produced? Magnets to study LINAC

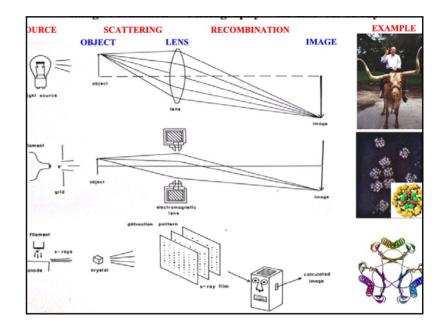
X-Ray Crystallography

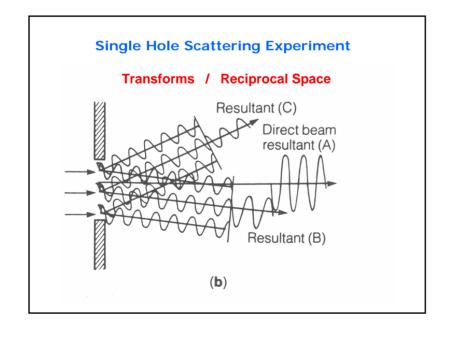
"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

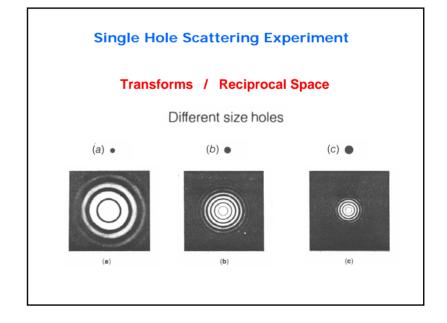
Topics

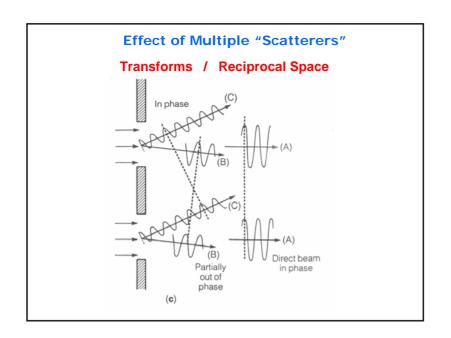

1. Protein Data Bank (PDB)

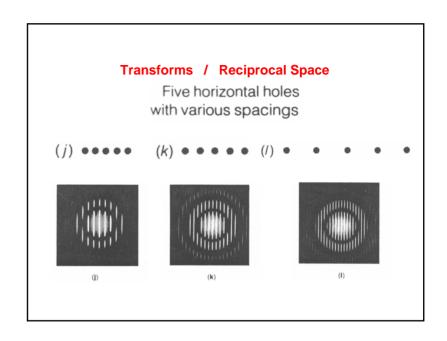

Data mining and Protein Structure Analysis Tools

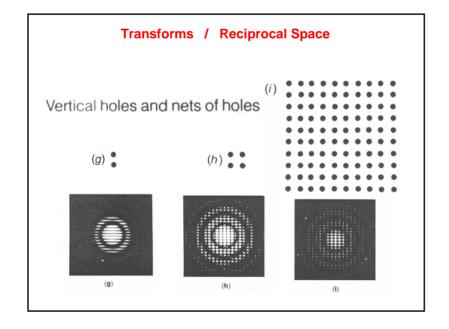

2. Image Formation

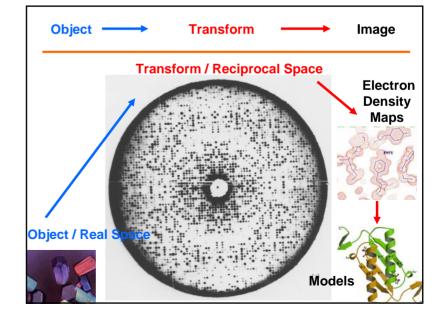

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

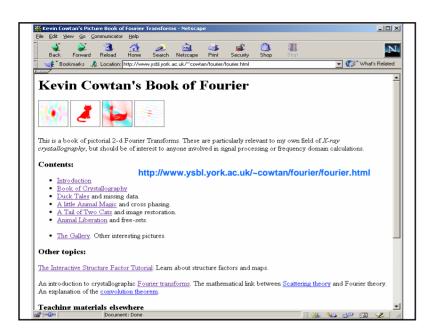

- 3. X-Ray Crystallography (after NMR)
 - a) Crystal Growth Materials / Methods
 - b) Crystal Lattices Lattice Constants / Space Groups / Asymmetric Unit
 - c) X-ray Sources Sealed Tube / Rotation Anode / Synchrotron
 - d) Theory of Diffraction Bragg's Law / Reciprocal Space
 - e) Data Collection Methods / Detectors / Structure Factors
 - f) Structure Solution Phase Problem: MIR / MR / MAD
 - h) Refinements and Models
 - i) Analysis and presentation of results

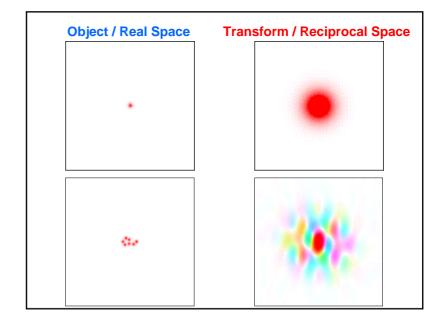


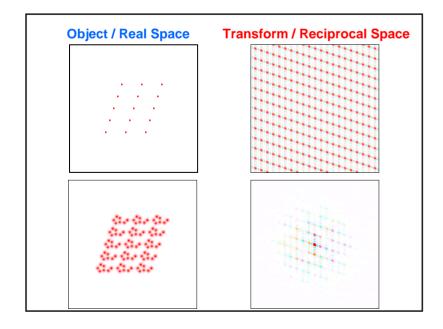


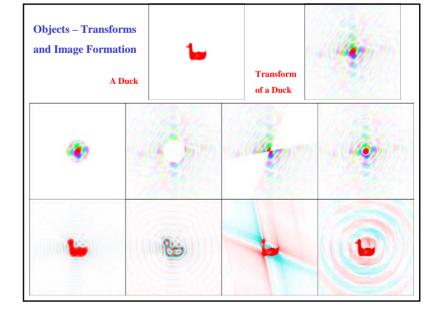


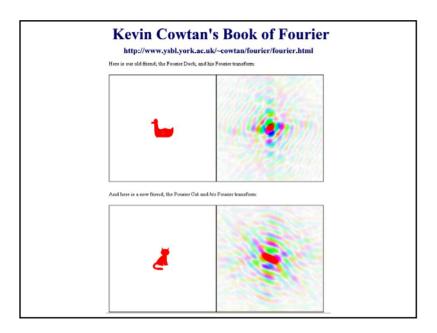


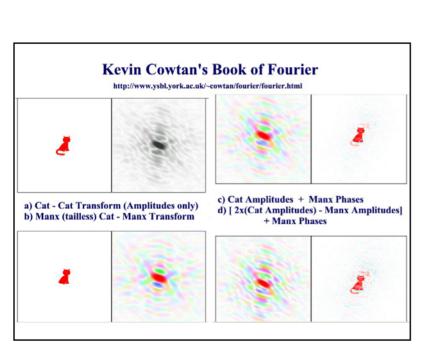












Kevin Cowtan's Book of Fourier http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html Duck Transform Amplitudes + Cat Phases Cat Transform Amplitudes + Duck Phases

Quiz questions: 1. Crystal Growth - Materials / Methods What is the single most important factor that determines crystal growth? What are the two most common precipitating agents for growing protein crystals? 2. Crystal Lattices - Lattice Constants / Space Groups / Asymmetric Unit Identify the unit cell, asymmetric unit and symmetry present in the pattern shown. 3. X-ray Sources - Sealed Tube / Rotation Anode / Synchrotron What is responsible for "characteristic" X-rays? What are the major advantages of using synchrotron radiation? 4. Theory of Diffraction - Bragg's Law / Reciprocal Space When collecting an X-ray data set, what is being measured and how is that data useful?