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Summary of the functions of various proteins identified in specific tissues of M. truncatula.
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Genome —the genome of an organism is its whole hereditary information

encoded in its DNA (or, RNA for some viruses) and includes both the
coding (genes) and non-coding sequences of the DNA.

Proteome — Proteomics is often considered the next step in the study of
biological systems, after genomics. It is much more complicated than
genomics, mostly because while an organism's genome is rather
constant, a proteome differs from cell to cell and constantly changes
through its biochemical interactions with the genome and the
environment. The Proteomeis dynamic (Cell type, time, conditions).

| Nnter actome — whole set of molecular interactions in cells, in the context

of proteomics, it refers to protein-protein interaction network(PPl), or
protein network (PN).

Systems Biology - seeks to understand how biological systems function.
By studying the relationships and interactions between various parts of a
biological system (e.g. metabolic pathways, organelles, cells,
physiological systems, organisms etc.), it is hoped that eventually a
model of the whole system can be developed.



Brief Introduction to Bioinformatics
Terms: NCBI / EMBL (Sequence Alignments)

Sequence databases

FASTA
Acknowledgement: This brief introduction

Scoring Matrix on Sequence Alignments is based on
information found at web sites such as

PAM that at NCBI and EMBL-EBI, and the
BLOSUM slides illustrating the alignment algorithm
_ were taken from a handout provided by

Smith — Waterman Dr. Ed Marcotte (Univ. of Texas at Austin)
who teaches a course on Bioinformatics

BLAST (CH391L) and on-line web notes of

PS| — BLAST Michael Yaffe at MIT.

Raw Score

. Ref:
Probability Value

http://www.ncbi.nlm.nih.qov/

E-value

http://www.ebi.ac.uk/clustalw/#

ClustalWw



Address | ] hitp: ffwsss.ncbi.nim.nib.gov)

~7 - 2|
-
<= NCBI

Fubbded

SITE MAP
Alphabetical List
Resource Guide

About NCBI

An introduction to
MNCBI

GenBank
Sequence
submission support
and software

Literature
cdataba.2as
PubMed, OMIM,
Books, and PubMed
Ceniral

Molecular
databases
Sequences,
structures, and
taxonory

;IIMBE' - | @ Maps ~ B Briefcase D Mail ~ W

Search | All Dﬁiﬁhﬂﬁ&ﬁ

National Center for Biotechnology Information

Matorzml ibrary of Medicine

BLAST Ok Books

™ for | \

TaxBrowser

Stz Instwuies of Healib

Structure

P What does NCBIl do?

Established in 1988 as a national resource for
molecular biology information, NCEI creates
public databases, conducts research in
computational biology, develops software
tools for analzing genome data, and
disseminates biomedical information - all for
the better understanding of molecular
processes affecting human health and

disease. More ...
100 Gigabases > .

GenBank and its collaborating databases, the
Eurape¢an Molecular Biology Laboratory and

the DHA Databank of Japan, have reached a
milestone of 100 billion bases from owver
165,000 organisms. See the press release or find

CCDS Database.

» Assembly Archive

P Clusters of
orthologous groups

» Coffee Break,
Genes & Disease,
NCBI Handbook

» Electronic PCR
» Entrez Home

» Entrez Tools

» Gene expression
omnibus (GEO)

» Human genome
resgources

» Malaria genetics &
genomics



International sequence databases exceed 100 gigabases

In August 2005, the INSDC announced the DN A sequence database exceeded
100 gigabases. GenBank 1s proud of its contributions toward this milestone. We
thank all the scientists who have worked through the submission process at
GenBank and made their sequence data available to the world. See the related

press release.
>100,000,000,000 bases

Growth of the
International Nucleotide Sequence Database Collaboration

> 200,000 organisms!!
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Computational biology & Bioinformatics

Computational biology and bioinformatics focus on the computational/ theoretical
study of biological processes, and much of the disciplines involve constructing
models like those above, then testing/validating/proving/applying these models using
computers, hence the nickname “in silico biology”. The fields are closely related:
computational biology is the more inclusive name, and bioinformatics often refers
more specifically to the use of “informatics” tools like databases and data
mining.

Big problems tackled by these fields include:
Assembling complete genomes from pieces of sequenced DNA
Finding genes in genomes
Modeling networks & interactions of proteins
Predicting protein/RNA folding, structure, and function

Sequence alignments (BLAST)



BLAST — Basic Local Alignment Search Tool

Many “flavors” of BLAST

Program Query Database
BLASTP aa aa
BLASTN nt nt
BLASTX nt (= aa) aa
TBLASTN aa nt (= aa)
TBLASTX nt (= aa) nt (= aa)

PsiBLAST aa(aamsa) aa

(Position-Specific Interative)



Why Align Sequences?

dentify Protein or Gene from Partial Information

nfer Functional Information

nfer Structural Information

Infer Evolutionary Relationships

Assumes:
conservation of e, conservation of
sequence function

BUT: Function carried out at level of proteins, I.e.
3-D structure

Sequence conservation carried out at level of DNA
1-D sequence



Sequence Alignment

The Smith-Waterman algorithm considers a simple model for protein
sequence evolution that allows us to align amino acid sequences of
proteins to see if the proteins are related. BLAST is designed to mimic
this algorithm, but BLAST is much faster due to some shortcuts and
approximations and clever programming tricks.

This process of gene evolution can be modeled as a stochastic
process of gene mutation followed by a “selection” process for those
sequences still capable of performing their given roles in the cell.
Over enough time, as new species evolve & diverge from related species,
this has the result of producing families of related gene sequences, more
similar in regions where that particular sequence is critical for the function
of the molecule, and less similar in regions less critical for the molecule’s
function. Frequently, we observe only the products of millions of years
of this process. Given a set of molecules (DNA, RNA or protein
seqguences) - ?? How can we decide if they are similar enough to be
considered part of the same family or if the observed similarity is just
present by random chance.



Database Searching

The Assumptions:

The sequences being sought have an evolutionary ancestral sequence in
common with the query sequence (our newly determined sequence).

Our best guess at the actual path of evolution is the path that requires the
fewest evolutionary events.

All substitutions are not equally likely and should be weighted to account
for this.

Gaps: Insertions and deletions are less likely than substitutions and
should be weighted to account for this. In most alignment and search
programs, the gap penalty consists of two terms, the cost to open the gap and
the cost to extend the gap.



FASTA Format

This farmat containg a one line header followed by lines of sequence data.
Sequences in fasta formatted files are preceded by a line stading with a " =" symbol.
The first ward an this line is the name of the sequence. The rest of the line is a description of the sequence.

Term Entry Name Molecule Type Gene Name Sequence Length

e.q. FOSE MOUSE Frotein fasb 35 bp

The remaining lines contain the sequence itself

Blank lines in a FASTA file are ignored, and so are spaces aor other gap symbaols [dashes, underscores, perods) in a
SEQUEnCE.

Fasta files containing multiple sequences are just the same, with one sequence listed right after anather. This format is
accepted far many multiple sequence alignment programs.

»FOSE MONSE Protein tosB. 5338 bp

HEQAFPGDYDSGESRCSSSPSAESOY LSSVDSFGSPPTAAASOECAGLGEMPGSEVETYTA
ITTSODL O LY OP TLISSAS OGP LASOPPAVDEY DM PG TS Y STRPCLSAYSTGGEASGS
GEPSTSTT TSGRV S AR ARARPERPREETLTPEEEEKERVREERHELAAAKCENEREELT
DRLOAETDOLEEEKAELESE I AELQKEKERLEF VLY AHKPGCK IFYEEGPGPGPLAEYED
LPGSTSAKEDGFGHWLLFPFPPPPPLPFSSRDAPPNLTASLFTHSEVQVLGDPFEVVSPSY
TSSFVLTCPEVSAFAGAQRTSGSEQPSDPLNSPSLLAL




Examples of aligned protein sequences:

Shown are 3 pairs of sequences, showing aligned sequences of proteins named
FIlgAl, FIgA2, FIgA3, and HvcPP. Between each pair the perfect matches and close
matches (shown by + symbols, indicating chemically similar amino acids) are written.

Two biologically related proteins with ssimilar sequences:
FI gA1l EAGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQAVVRVKAGORVNVI ASGD

++K+K+GRLDTLPP  +L+ N A+SLR ++ QP+ R+ W+KA®XQ V V+A G+ (28/65)
Fl gA2 TLQDI KMKQGRLDTLPPGALLEPNFAQGAVSLRQ NAGQPLTRNMLRRLW | KAGQDVQVLALGE  (186)
Also biologically related (& fold up into the sane 3D protein structure):
FI gA1l EAGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQAVVRVKAGORVNVI ASGD

A+ P +L |+ RL P + | RtAWV+ G V V (15/ 65)

FI gA3 LAALKQVTLI AGKHKPDAMATHAEEL QG&KI AKRTLLPGRYI PTAAI REAW.VEQGAAVQVFFI AG (50)

But these are biologically unrelated (& fold up into unrelated structures):

FI gA1 AGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQA- VIRVKAGORVNVI ASGD
AGFV K G+ + PRT ++ | + P Pl +++A WRV A + V V+ @D (21/65)

HvcPP AGHV- - KNGTVRI VGPRTCSNVWWNGT FPI NATTTGPSI PI PAPNYKKALWRVSATEYVEVWRVED (128)

The problem we face is how to distinguish the biologically meaningless match
(FIgA1-HvcPP) from the biologically meaningful ones (FIgA1-FIgA2 and FIgA1-
FIgA3)?



To align two segquences, we need.:

1. Some way to decide which alignments are better than others. For this, we’ll
Invent a way to give the alignments a “score” indicating their quality.

— “Scoring Matrix”
2. Some way to align the proteins so that they get the best possible score.
=P Smith-Waterman algorithm
dynamic programming, recursive manner

3. Then finally, some way to decide when a score is “good enough” for us to
believe the alignment is biologically significant.

P “Scramblings - Expect Values”

extreme value distribution



What is a scoring matrix?

The aim of a sequence alignment, is to match "the most similar elements" of
two sequences. This similarity must be evaluated somehow.

For example, consider the following two alignments:

AIWQH AIWQH
AL--QH A--LQH

They seem quite similar: both contain one “gap" and one “substitution,” just at
different positions. However, the first alignment is the better one because isoleucine
(I) and leucine (L) are similar sidechains, while tryptophan (W) has a very different
structure. This is a physico-chemical measure; we might prefer these days to say
that leucine simply substitutes for isoleucine more frequently---without giving an
underlying "reason" for this observation.

However we explain it, it is much more likely that a mutation changed | into L and
that W was lost, than W was changed into L and | was lost. We would expect that
a change from | to L would not affect the function as much as a mutation from W to L--
-but this deserves its own topic.

To quantify the similarity achieved by an alignment, scoring matrices are used:
they contain a value for each possible substitution, and the alignment score is the
sum of the matrix's entries for each aligned amino acid pair. For gaps a special gap
score is necessary---just add a constant penalty score for each new gap. The optimal
alignment is the one which maximizes the alignment score.



Importance of scoring matrices

Scoring matrices appear in all analysis involving sequence comparison.

The choice of matrix can strongly influence the outcome of the analysis.

Scoring matrices implicitly represent a particular theory of evolution.
Understanding theories underlying a given scoring matrix can aid in making proper
choice.

Types of matrices | Ref: http://www.ebi.ac.uk/clustalw/#

PAM BLOSSUM GONNET  DNA Identity Matrix




Unitary Scoring Matrices

Early sequence alignment programs used unitary scoring matrix. A unitary matrix
scores all matches the same and penalizes all mismatches the same. Although
this scoring is sometimes appropriate for DNA and RNA comparisons, for protein
alignments using a unitary matrix amounts to proclaiming ignorance about
protein evolution and structure. Thirty years of research in aligning protein
seqguences have shown that different matches and mismatches among the 400
amino acid pairs that are found in alignments require different scores.

A T (5 L
A =
L -10000 1
& -10000 =10000 -
i -10000 =10000 =10000 j |

Many alternatives to the unitary scoring matrix have been suggested. One of the
earliest suggestions was scoring matrix based on the minimum number of
bases that must be changed to convert a codon for one amino acid into a
codon for a second amino acid. This matrix, known as the minimum mutation
distance matrix, has succeeded in identifying more distant relationships among
protein sequences than the unitary matrix approach.



Dot Matrix Alignments

Sequence#1

1

Sequence#1

Insertion

A Global Alighment

rtion



Evolutionary Distances

The best improvement achieved over the unitary matrix was based on evolutionary
distances. Margaret Dayhoff pioneered this approach in the 1970's. She made an
extensive study of the frequencies in which amino acids substituted for each other
during evolution. The studies involved carefully aligning all of the proteins in
several families of proteins and then constructing phylogenetic trees for each
family. Each phylogenetic tree was examined for the substitutions found on each
branch. This lead to a table of the relative frequencies with which amino acids
replace each other over a short evolutionary period.

This table and the relative frequency of occurrence of the amino acids in the proteins
studied were combined in computing the PAM (Point Accepted Mutations) family
of scoring matrices.

From a biological point of view PAM matrices are based on observed mutations.
Thus they contain information about the processes that generate mutations as
well as the criteria that are important in selection and in fixing a mutation within a
population. From a statistical point of view PAM matrices, and other log-odds
matrices, are the most accurate description of the changes in amino acid
composition that are expected after a given number of mutations that can be
derived from the data used in creating the matrices. Thus the highest scoring
alignment is statistically the most likely to have been generated by evolution rather
than by chance.



Log-odds scoring

Log-odds matrices: Each score in the matrix is the logarithm of an odds ratio.
The odds ratio used is the ratio of the number of times residue "A" is observed
to replace residue "B" divided by the number of times residue "A" would be
expected to replace residue "B" if replacements occurred at random.

Deriving realistic substitution matrices:

First need to know frequency of one amino acid substituting for another

In related proteins [=P(ab)] c/w the chance that substituting one for the other
occurred by chance, based on the relative frequencies of each amino acid

in proteins, q(a) and q(b). Call this the “odds ratio”: P(ab)/q(a)a(b)

If we do this for all positions in an alignment, then the total probablilty will
be the product of the odds ratios at each position....but multiplication is
computationally expensive....so....take the log (odds ratio) and add them instead.

The BLOSUM family of matrices developed by Steven and Jorja Henikoff are one
of these newly developed log-odds scoring matrices. The improved performance
of the BLOSUM matrices can be attributed to many more protein sequences
known now, thus they incorporate many more observed amino acid substitutions,
and because the substitutions used in constructing the BLOSUM matrices are
restricted to those substitutions found within well conserved blocks in a
multiple sequence alignment.



PAM (Percent Accepted Mutation)

A unit introduced by M.O. Dayhoff et al. to quantify the amount of evolutionary
change in a protein sequence. 1.0 PAM unit, is the amount of evolution which
will change, on average, 1% of amino acids in a protein sequence. A PAM(X)
substitution matrix is a look-up table in which scores for each amino acid
substitution have been calculated based on the frequency of that substitution in
closely related proteins that have experienced a certain amount (x) of
evolutionary divergence.

PAM matrices are based on global alignments of closely related proteins.

71 groups of protein sequences, 85% similar

1572 amino acid changes.

Functional proteins —"”Accepted” mutations by natural
selection

PAM1 matrix means 1% divergence between proteins - i.e.

1 amino acid change per 100 residues. Some texts re-state
this as the probability of each amino acid changing

into another is ~ 1% and probability of not changing is ~99%

The optimal alignment of two very similar sequences with PAM 500 may be
less useful than that with PAM 50.



Construction of a Dayhoff Matrix: PAM1

Step 1: Measure pairwise substitution frequencies for each
amino acid within families of related proteins

1

...GDSFHYFEFVSHG.... .
. GDSFHYYVSFG.... .

.. .GDSYHYFVSFG.... .
_GDSFHYFVSFG. ..

...GDSFHFFVSFG.... .

900 Phe (F)....+ another 100 probable Phe but...

100 Phe (F) —» 80 Tyr (Y), 3 Trp (W), 2 His (H)....
Givesf,,i.e. f1.,=80
few=3

....DY evolution!



Amino Acid Change
F—A
F—R
F—N
F—D
F—C
F—=Q
F—E
F—G
F—H
F—1
F—L
F—EK
F—M
F—F
F—P
F—S
F—T
F—W
F—Y
F—V

These are the M_, values!
i.e. the chance that one
amino acid will replace
another at 250 PAMs in
two proteins that are

. evolutionarily related

to each other!

PAM 1 Score PAM 250 Score
0.0002 0.04
0.0001 0.01 |
0.0001 0.02
0.0000 0.01
0.0000 0.01
0.0000 0.01
0.0000 0.01
0.0001 0.03
0.0002 0.02
0.0007 0.05 |
0.0013 0.13 %
0.0000 0.02 |
0.0001 0.02
0.9946
0.0001 0.02
0.0003 0.03
0.0001 0.03
0.0001 0.01
0.0021
0.0001 0.05

|
/

SUM=1.0



PAM 250 Amino Acid Similarity Matrix

Cys 12

gly -3

Pro -3

Ser 0

Ala -2

Thr -2

Asp -5

glu -5

Asn -4

gln -5

His -3

Lys -3

Arg -4

Val -2

Met -5 [

Ile -2 2 5

Leu -6 4 2 f

Phe -4 0 1 2 g
Tyr 0 -2 -1 -1 7 10
Trp -8 -4 -5 -2 0 D 17

Cys Gly Pro Ser Ala Thr Asp Glu Asn Gln His Lys Arg Val Met Ile Leu Phe Tyr Trp

The colored regions in the figure above mark one possible grouping of such
positive scores. These regions provide an objective basis for defining
conservative substitutions, namely as amino acids that replace each other more
frequently than would be expected from random replacements.



But we have to use the right matrix!!!

PAM 250 matrix — 250% expected change

Sequences still ~ 15-30 % similar, i.e. Phe will match Phe ~ 32% of the time
Ala will match Ala ~ 13% of the time

Expected % similarity

Other PAM matrices: PAM 120 - 40% ]

PAM 80 — 50% Use for similar sequences
PAM 60 — 60%

PAM250 — 15-30% similarity.

Use the correct PAM matrix for alignments based on how similar the
sequences to be algned are! But wait.....how do we know that in the

So...... y PAM200, PAM120, PAM60, PAM80, and
PAM30 matrix and use the one that gives the highest ungapped
aligment score




Alternative amino acid matrices

Problems with Dayhoff:
» Based on amino acids, not nucleotides.
« Assumes evolutionary model with explicit phylogenetic relationships, and
circular arguments: alignment — matrices; matrices — new alignments.
» Based on a small set of closely related molecules.
»  Gonnett, Cohen & Benner
-All against All database matching using DARWIN
1,700,000 matches
Compile mutation matrices at different PAMs DIRECTLY

« BLOSUM = Blocks Amino Acid Substitution Matrices-Henikoff&Henikoff 1992

-based on a much larger dataset from ~500 Prosite families identified by
Bairoch using conserved amino acid patterns “blocks” that define each family.

Typically used for multiple sequence alignment.
AA substitutions noted, log odds ratios derived.

for example...Block patterns 60% identical give rise to BlosumGO matrix,
etc....l.e. conservation of functional blocks based on un-gapped alignments.

Blosum&Z - best match between information content and amount of data
Not based on explicit evolutionary model



BLOSUM matrices are based on local
alignments.

BLOSUM (BLOcks SUbstitution Matrix): BLOSUM 62 is a matrix calculated
from comparisons of sequences with no less than 62% divergence.

BLOSUM 62 is the default matrix in BLAST 2.0. Though it is tailored for
comparisons of moderately distant proteins, it performs well in detecting closer
relationships. A search for distant relatives may be more sensitive with a different
matrix.

Differences between PAM and BLOSUM

PAM matrices are based on an explicit evolutionary model (that is,
replacements are counted on the branches of a phylogenetic tree), whereas the
BLOSUM matrices are based on an implicit rather than explicit model of
evolution.

The sequence variability in the alignments used to count replacements. The PAM
matrices are based on mutations observed throughout a global alignment, this
includes both highly conserved and highly mutable regions. The BLOSUM
matrices are based only on highly conserved regions in series of alignments
forbidden to contain gaps.



BLOSUMG62 Substitution Scoring Matrix. The BLOSUM 62 matrix is a 20 x
20 matrix in which every possible identity and substitution is assigned a
score based on the observed frequencies of such occurences in
alignments of related proteins. Identities are assigned the most positive
scores. Frequently observed substitutions also receive positive scores
and seldom observed substitutions are given negative scores.

Blosum 45 Amino Acid Similarity Matrix

Gly 7

Pro -2 9

Asp -1 -1 7

Glu -2 0 2 6

Asn 0 =2 2 0 6

His -2 =2 0 011 10

Gln -2 -1 0 2 6

Lys -2 -1 0 1 0 -1 1 5

Arg -2 -2 -1 0 0 0 1 3 7

Ser 0 -1 0 6 I =1 0 -1 -1 | 4
Thr -2 -1 -1 -1 0o -2 -1 -1 -1

Ala o -1 -2 -1 -1 -2 -1 -1 =2 1 0 o

2 m3 wh =3 A =3 =2 -3 <7 -4 =3 =2 -3 -3 -2 -2 |3 3 18

Leu

Phe 0o 0

Tyr =3 =3 =2 =2 -2 2 -1 -1 -1 -2 -1 =2 0 -1 0 0 3 8
Trp

Cys

“3 =4 u3 =3 P =3 23 =3 =3 -1 =1 <1 =2 =} -3 =2 =2 =3 =5

Gly Pro Asp Glu Asn His Gln Lys Arg Ser Thr Ala Met Val Ile Leu Phe Tyr Trp

5



The PAM family

+ PAM matrices are based on global alignmernts of closely related proteins.

# The PAM1 iz the matrix calculated from comparizons of zequences with no more than 1% divergence.
« Cther PAM matrices are extrapolated from PAMT .

The BLOSUM family

« BLOSUM matrices are based on local alignments.
+ BLOSUM B2 = a matrix calculated from comparizons of sequences with no less than 62% divergence.

+ Al BLOSUM matrices are based on obzerved alignments; they are not extrapolated fram n:u:urnpar-iﬂcunﬂ of clozely related
proteins.

+ BLOSUM 62 iz the default matrix in BLAST 2.0. Though it is tailored for comparizons of moderately distant proteins, it
performs well in detecting closer relationships. & zearch for distant relatives may be more sensitive with a different matrix.

BLOSUM 80 BLOSUM 62 BLOSUM 45
PAM 1 PAM 120 PAM 250
Less divergent = > More divergent

The relationship between BLOSUM and PAM substitution matrices. BLOSLUIM matrices with higher numbers
and PAM matrices with low numbers are both designed for comparisons of closely related sequences.
BLOSLIM matrices with low numbers and PAM matrices with high numbers are designed for comparisons of

distantly related proteins. If distant relatives of the query sequence are specifically being sought, the matrix can
he tailored to that type of search.



Sequnce Analysis: Which scoring method should | use?

Comparable Blosum and PAM Tables

Percent

Sequence
Blosum PAM Identity
Tables (Entropy) Tables (Entropy) PAM Tables
Blosum 90 (1.18) PAM 100 (1.18) 43
Blosum 80 (0.99) PAM 120 (0.98) 38
Blosum 60 (0.66) PAM 160 (0.70) 30
Blosum 52 (0.52) PAM 200 (0.51) 25
Blosum 45 (0.38) PAM 250 (0.36) 20

The entropy as defined by information theory is the average amount of
iInformation per position in a sequence alignment that is available to determine
whether or not the sequences are homologous. This amount of entropy is
available only if the similarity scores used in the database search or alignment are
matched for the appropriate degree of sequence divergence.



An Alignment Algorithm

If we had all the time in the world, we could just make all possible alignments,
score them all, & choose the best. But realistically, that won't work, since
even for two 100 amino acid sequences, there are 10 possible
alignments. So, the following approach was developed.

The particular class of algorithm we’ll use is called dynamic programming,
which refers to a set of algorithms that allow the optimal solutions to be found
for problems that can be defined in a recursive manner. That is, the
problems are broken into subproblems, which are in turn broken into
subproblems, etc, until the simplest subproblems can be solved. For
seguence alignments, this sequential dependency takes a form where the
choice of optimal alignment of a sequence of length n is found from the
solution to the optimal alignment of a sequence of length n-1 plus the
alignment of the nth symbol, and the optimal alignment of the n-1 case is a
function of the n-2 case, and so on. Dynamic programming was
developed by Richard Bellman 40-50 years ago, but then “rediscovered”
by biologists aligning sequences in the 1970’s.



There are 2 types of alignments that we could make: global and local

Global alignments will require a forced match between every symbol of one string
with some symbol (or gap) of the second string, e.g.

ACGTTATGCATGACGTA
-G - - ATGCAT- - - - T-

Local alignments will correspond to the best matching subsequences (including
gaps). For the above example, this corresponds to:

ATGCAT
ATGCAT

We'll look at local alignments, since these are what are used in almost any
sequence alignment algorithm you might choose. This approach (in biology) is
named the Smith-Waterman algorithm after Temple Smith & Mike Waterman,
Journal of Molecular Biology vol. 147, 195-197 (1981).
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GAPS / Gap peanaties

In most alignment and search programs, the gap penalty consists of two
terms, the cost to open the gap and the cost to extend the gap.

Utility Details

FASTA3, GAPOPEN or OPENGAP or OPEN GAP PENALTY : Penalty far the first residue in

BLASTZ, agap

CLUSTALWY, (e.0.fasta defaults: -12 by with proteins, -1k for DNA,).

ScanPs and

WP sreh. GAPEXT or EXTENDGAP or EXTEND GAP PENALTY : Fenalty for additional
residues in a gap
(2.0. Tasta defaults: -2 with proteins, -4 for DRA).

Ref: http://www.ebi.ac.uk/clustalw/#




Examples of aligned protein sequences:

Shown are 3 pairs of sequences, showing aligned sequences of proteins named
FIlgAl, FIgA2, FIgA3, and HvcPP. Between each pair the perfect matches and close
matches (shown by + symbols, indicating chemically similar amino acids) are written.

Two biologically related proteins with ssimilar sequences:
FI gA1l EAGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQAVVRVKAGORVNVI ASGD
++K+K+GRLDTLPP  +L+ N A+SLR ++ QP+ R+ W +KARQ V V+A Gt
Fl gA2 TLQDI KMKQGRLDTLPPGALLEPNFAQGAVSLRQ NAGQPLTRNMLRRLW | KAGQDVQVLALGE  (186)
Also biologically related (& fold up into the sane 3D protein structure):
FI gA1l EAGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQAVVRVKAGORVNVI ASGD
A+ P +L I+ RL P + 1 RtAWV+ G V V
FI gA3 LAALKQVTLI AGKHKPDAMATHAEEL QG&KI AKRTLLPGRYI PTAAI REAW.VEQGAAVQVFFI AG (50)

But these are biologically unrelated (& fold up into unrelated structures):

FI gA1 AGNVKLKRGRLDTLPPRTVLDI NQLVDAI SLRDLSPDQPI QL TQFRQA- VIRVKAGORVNVI ASGD
AGFV K G+ + PRT ++ | + P Pl +++A VRV A + V V+ @D

HvcPP AGHV- - KNGTVRI VGPRTCSNVWWNGT FPI NATTTGPSI PI PAPNYKKALWRVSATEYVEVWRVED (128)

The problem we face is how to distinguish the biologically meaningless match
(FIgA1-HvcPP) from the biologically meaningful ones (FIgA1-FIgA2 and FIgA1-
FIgA3)?
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How do we know when a score is “good enough”?

Two elements of aligning sequences:
scoring the alignments (by generating substitution matrices)
constructing the optimal scoring alignments by dynamic programming.

After we get an alignment, we have to decide if score is “good enough” to be
significant. One way to this is to ask how hard it is to get that score from random
alignments. Suppose we “scrambled” one of the sequences, and found the best
alignment with the other sequence. The algorithm will always give us an
alignment, even though the score is not very good. Sitill, let’'s do the scrambling
and alignment process 1000 times. If we look at those scores, and never see a
score as good as the real one, we can say that the real one has a1in a 1000
chance of happening just by luck. If we did this 1,000,000 times and still didn’t
see a score that good, we would begin to feel pretty confident in our alignment being
significant.



Could do a million random tests after an alignment, and that should give a
correct feeling for how good the alignment was. However, in practice, we
can get away with just doing a few random trials, then mathematically
modeling the scores we get out to save having to do a million such trials.
The histogram of scores turns out to have a particular, predictable shape
known as the extreme value distribution (also called the Gumbel
distribution). Visually, the extreme value distribution looks this:

This distribution can be described by

an equation of the form:

ik -""v'rf,’/: (=)

p(max score < X )=~ e

where N is the number of scrambled y's tested, mis the mean value of the
high scores from the scrambling experiment, and k and | are numbers that
characterize the shape of the particular extreme value distribution that
comes from aligning xto y. In practice, k and | can be fit from the scores
from a few random alignments,



Multiple Sequence Alignments
For 3 sequences....

ARDFSHGLLENKLLGCDSMRWE

SRDW--ALIEDCMV-CNFFRWD
An O(mnj) problem !

Consider sequences each 300 amino acids

Uh Oh I
2 SECIUEI'ICES - (300)2 Our polynomail problem

3 sequences — (300)3 T ome Sxponential
but for v sequences — (300)



ClustalW
Higgins and Sharp 1988

» 1- Do pairwise analysis of all the sequences
(you choose similarity matrix).

« 2-Use the alighment scores to make a
phylogenetic tree.

+ 3- Align the sequences to each other guided

by the phylogenetic relationships in the tree.
New features: Clustal EClustalW (allows weights) ClustalX (GUl-based

Weighting is important to avoid biasing an alignment by many sequence
Members that are closely related to each other evolutionarily!



Steps in doing a Multiple Sequence Alignment:

1) Get desired sequence in FASTA format.
2) NCBI web site —BLAST run
3) Select best matches to use in alignment

4) EMBL web site — ClustalW run

>CgX SEQUENCE
MPTYTCWBQR! Rl SREAKQR! AEAI TDAHHEL AHAPKYLVQVI FNEVEPDSYFI AAGS
ASENH W/QATI RSGRTEKQKEELLLRLTQEI ALI LG PNEEVWW/YI TEl PGSNMTEY

GRLLMVEPCEEEKWNSLPEGLRERL TELEGSSE
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Goagle - |ciustalw
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EBI Home About EBI

* Help Index

= General Help
* Formats

= Gaps

= hlatrix

* References

= Clustaly Help
= Clustaly FAQ
= Jalview Help
* Scores Tahle

= Alignment

* Colours

BL-EBI

European Bioinformatics Institute
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—

Groups Services Toolbox Databases Downloads Submissions

SEQUEMNCZE AMALYSIS

I EE Submission Form

Clustal W is a general purpose multiple sequence alignment program for DNA or proteins. It
praduces hiologically meaningful multiple sequence alignments of divergent sequences, It
calculates the best match for the selected sequences, and lines therm up so that the identities,
gimilarities and differences can be seen. Evalutionary relationships can be seen via viewing
Qladngrams or Phylograms. New users, please read the FAQ.

[g] Download Software
YOUR EMAIL ALIGHWMEMT TITLE RESLILTS ALIGHMMENT CPU MODE
l— | interactive V| |f|.||| *f|
ETUP WP OO SCORE TYPE TOPDIAG FAIRGAFP
MORD SIZE) LEMGTH
def def » percent v def + def
MATRIX GAP OFPEMN EMND GAF GAF
GAPS EXTEMEION DISTAMNCES
def b def + def = def |+ def =
OUTPUT PHYLOGEMNETIC TREE
OUTPUT QUTPLUT TREE TYPE CORRECT DIST. IGHORE GAPS
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4-OT- (Tautomerase/MIF Superfamily)

- with Professor Chris Whitman (Pharmacy)

Christian P.
Whitman

EEEEEEETT  HHHHHHHHHHHHHHHHHHHT GGG EEEEEEE GGG EETTEETTTT
40T 1 Pl AQ H LEG_RSDEKETLI REVSEAI SRSLDAPLTSVRVI | TEMAKGHFG GGELASKVRR 62
CHM 1 PHFI VECSDNI REEADLPG.FAKVNPTLAATG FPLAG RSRVHW/DTWIVADGOHDYAFVHM . - 125
M F 1 PMFI VNTNVP_RASVPEGFLSEL TQQRLAQATGK _PAQYI AVHWPDQLMIFSGTNDPCALCSL. . - 114

A) B)

Ref: Taylor, A.B., Czerwinski, R.M., Johnson, W.H., Whitman, C.P., and Hackert, M.L., "Crystal Structure of 4-Oxalocrotonate Tautomerase | nactivated by 2-Oxo-3-
pentynotate at 2.4A resolution: Analysis and Implications for the Mechanism of Inactivation and Catalysis' Biochemistry, 37, 14692-14700 (1998).



= New Activities

B—o—p Motif

= New Structures

4-OT - Tautomerase

40T Homologues
CHMI - Isomerase
MIF - Cytokine / Hormone
Dehalogenase
Decarboxylase

ag a5 a, (ab),




Sample Psi-BLAST Output

Ji nghui Zhang, Zheng Zhang, Webb MIler, and David J. Lipman (1997), "Gapped BLAST and PSI -
BLAST: a new generation of protein database searchprograns”, Nucleic Acids Res. 25:3389-3402.
RID: 1012187428-16844-19639
Query= Pseudononas putida - 4-0T (62 letters)
1 piagihileg rsdegketli revseaisrs Idapltsvrv iitemakghf giggelaskv rr
Dat abase: All non-redundant GenBank CDS
transl ati ons+PDB+Swi ssPr ot +PlI R+PRF
857,413 sequences; 270,034,499 total letters

kkhkkhkkhkkkhkhhkkkhkhhkkhkihkhkhkhk*x

Sequences with Evalue BETTER than threshol d
Round 1 — 30 Hits / Round 2 57 hits /' Round 3 - 66 Hits

Sequences with E-value BETTER than threshol d

Score E
Sequences producing significant alignnents: (bits) Val ue
gl | 6624277| dbj | BAA88507. 1| (AB029044) 4-oxal ocrotonate isonerase... 81  2e-15
gl | 16124116| ref | NP _407429. 1] (NC_003143) putative tautonerase [VY... 78  2e-14
gi | 14715457| dbj | BAB62059. 1| (D85415) 4-oxal ocrotonate tautoneras... 78  2e-14
gi | 15642664 ref | NP 232297. 1] (NC_002505) 5-carboxynet hyl -2-hydro. .. 44 3e-04
gi | 15801678| ref | NP 287696. 1| (NC_002655) ydcE gene product [Esch... 44 3e-04
gi | 16079011| ref | NP 389834. 1] (NC_000964) simlar to hypothetical... 43 8e-04
k) kkikhkkkkhkhkhkkhkkkkhkikhkhk*k
Sequences with E val ue WORSE t han t hreshol d
gi | 15894207 | ref | NP 347556. 1| (NC_003030) Protein related to MFH. .. 38 0.014
gl | 14600626| ref | NP 147143. 1] (NC_000854) MRSA protein [ Aeropyrum .. 37 0.047
gi | 17562710| ref | NP 506003. 1| (NM_073602) macrophage mgration in... 35 0.16
gl | 5051891| gb| AAD38354. 1| (AF119571) nmcrophage migration inhibi... 30 4.4
gl | 14600626 ref | NP _147143. 1| (NC_000854) MRSA protein [ Aeropyrum .. 30 4.6

gl | 5327268| enb| CAB46354. 1| (AJ012740) macrophage migration inhib... 30 8.1




clustalw.aln

CLUSTAL W (1.83) multiple sequence alimmment

gil19551312 | Coryne
ciz=-Caal
CaaDl-alpha
ywhb_bacsu

xylh psepu

dupi helpy

dupi arcfu
CaaD2-bata
gilzl22531l1l5treco
M5AD Psepa
gil273803701Brad]ia
HIF human

CHMI ecoli

gi]19551312 | Coryne
cig-Caal
Caall=-alpha
ywhb_bacsu

xylh psepu
dupl_helpy
dupi_arcfu
CaalZ-beta
gil21l22531l115treco
HNAD_Psepa
gil27380370|Bradja
HIF human

CHMI ecoll

PTYTCUSQRIRISREAKQRIAEATTDAHHE LAHAPKYLVQVIFNEVERDSYFIAAQ--S5-
PVYHVYVSQDRLTPSAKHAVAKATTDAHRGLTGTQHF LAQVNFQEQPAGNVFLGGY-~-Q-
PHI§CDMRY - === === o o o o e oo

PIAQTHILE===mmmmmmsmmmmmmm s s s e mm e e e e e e e e e e e e
PFINTKLYPE===mmmnmmmsmmmmmmo—e——————————————mmmn e e m
PYLIVYGPK-==mmmmmmmmemmmmmmememe— e - ———————————————
30 42 1 (e
PLITVSLRQGTTPQYRRLVSEALHKSMVDVLKIPQDDQFHVFHEVTDDNFVIQPYYV--FG
PLLKFDIFYGRTDAQIKSLLDAAHGANVDAFGVPANDRYQTVSQHRPGENVLEDTG-- 16
PLITVSYTTSROSPSLKADIASAVSELTAKILHKD PKVTAIIVKSYDAGDUFAGGRSLAE
PHFIVNTHVERASVPDGFLSELTQULAQATGKPPQY IAVHVVED QLMAFGG---===-=~

PHFIVECEDNIREEADLPGLFARVNPTLAATGIFPLAG-=-=m=mm == e e e e e
®

~ASENHIUVQATIRSGRTEK(KEELLLRLTQETAL ILGIPNEEVUVY ITEIPGSNITEYG
-QGGDTIFVHGLHREGRSADLKGQLAQRIVDDVSVAAE IDRKHIUVTFGENPAQQVEYG
--------------- GRTDEQKRALSAGLLRVISEATGEPRENT FFVIREGSGINFVEHG
--------------- GRTDEQKRNLVEKVTEAVKETTGASEEKTVVFIEENRKDHYAVAG
--------------- GRSDEQKETLIREVSEATSRSLDAPLTSVRVIITENAKGHFGIGG
------------- HGGPTHEQKQQLIEGVSDLIVY LNKNKAS IVV L IDEVDSNIYGLGG
---------------- LDVGKKREFVERLTSYAREITGIDRSAITILIHE PPAENVGVGG
--------------- GLSVARKQQLIRDVIDVTHKS IGSDPKIINVLLVEHAEARISISG
LRRTSRTLFIQLSFNRRGAE QKARLFRALVANLRLYADVPEEDVHLVAFE TARENUWAAG
TGRSSAVVLLTVISRPRSEEUKVCFYRLLTGALERDCGISPDDVIVALVENSDADUSFGR
QKLASTWIDIHVSEGTHTKDERAAYLAANFKRIAE ILGPLHPETY LHVDEVKGDAYGEGG
-5SEPCALCSLHSIGRIGGAQNRSYSKLLCGLLAERLRISPDRVY INVYDMNAANYGUNN
IRSRVHUYDTUQMADGUHD YASVEITLKIGAGRS LESRUQAGEHLFELIKTHFARLMESR
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21225371 Streco 146 aa
M5,

AD _Fsepn 129 aa
0t -alpha 75 aa
ik _tacsu 6] aa

rylh_psepu 62 Aa

pi_helpy €7 aa

= e Laadld =bela T U ad

19551312 Cayme 148 aa
Canll 149 ag
piarcfu 62 aa
278R0370 Bradin 139 as

125 aa

I— WIE:-hwman ]_ 22 aa

RLLMEPGEEEEWFNSLPEG

LRERLTELEGSSE-

RFLPOPGHEGENFDNLSSDERAFMETNVDVSRT

EHLPDYVPGNANDKALTIAK

ESYHHLR QKN -~~~
KLIADRERE -—-----~-~-
RTHGEAASTERTPAVS---
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