

Computer Simulation and Global Data Fitting Kenneth A Johnson University of Texas at Austin

1-10.76

Kinetics of substrate binding: *Two-steps, four rates*
C. Complete solution
$$E + S \xleftarrow{k_1}{k_{-1}} EgS \xleftarrow{k_2}{k_{-2}} EgX$$
Each species follows a double exponential
$$[E]_i / [E]_0 = A_1 e^{-I_1 t} + A_2 e^{-I_2 t} + C$$
with rates of:
$$I_1 \approx k_1 [S] + k_{-1} + k_2 + k_{-2}$$

$$I_2 \approx \frac{k_1 [S](k_2 + k_{-2}) + k_{-1} k_{-2}}{k_1 [S] + k_{-1} + k_2 + k_{-2}}$$

Only k_{cat} and K_{m} (or $k_{cat}\!/\!K_{m}\!)$ can be determined				
$E + L \xleftarrow{8.9}{39700} EL $	$\xrightarrow{2650} EI = 6.64x10^8$	$2.44x10^9 ED \xleftarrow{9610} 4960 418$	E + D	
	k_{cat} (s ⁻¹)	k _{cat} /K _m (μM ⁻¹ s ⁻¹)		
Forward	1570	0.40		
Reverse	980	0.40		
$E + L \xleftarrow{(100)} EL \xleftarrow{1580} ED \xleftarrow{245000} E + D$				
388000	990	(100)		
	k _{cat} (s ⁻¹)	$k_{cat}/K_m (\mu M^{-1}s^{-1})$		
Forward	1563	0.40		
Reverse	983	0.40		

Only k_{cat} and K_m (or $k_{cat}\!/\!K_m$) can be determined				
$E + L \xrightarrow{(100)} 388000$	$\stackrel{1580}{\longleftarrow}_{990}$	$ED \xleftarrow{245000}{(100)} E + D$		
	k _{cat} (s ⁻¹)	k _{cat} /K _m (μM ⁻¹ s ⁻¹)		
Forward	1580	0.40		
Reverse	990	0.40		
$E + L \underbrace{\frac{1.46}{6650}}_{6650}$	$\stackrel{3590}{\leftarrow} 1790$	$\stackrel{2}{\to} ED \xrightarrow{4190} E + D$		
	k _{cat} (s ⁻¹)	k _{cat} /K _m (μM ⁻¹ s ⁻¹)		
Forward	1572	0.40		
Reverse	989	0.40		

Guidelines for Data Fitting by Simulation

- Conventional data fitting to defined equations can illuminate patterns in the data, help construct a model, and get initial estimates d rate constants
- 2. Enter complete model including all known steps
- 3. Constrain the fitting of constants that are not determined by the data
- Evaluate the fit using dynamic simulation to explore the space over which data can be fitted
- 5. Keep the number of fitted parameters within the range of the information content of the data

Do not over-interpret the data!

