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Genomics
Proteomics

I nteractomics
Systems Biology —

None of these fields of
research would be
possible without
Bioinfor matics,
which would not be
possible with lots of
computing power!
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Mass Spec and MicroArrays / Applications

Genome —the genome of an organism is its whole hereditary information
encoded in its DNA (or, RNA for some viruses) and includes both the
coding (genes) and non-coding sequences of the DNA.

Proteome — Proteomics is often considered the next step in the study of
biological systems, after genomics. It is much more complicated than
genomics, mostly because while an organism's genome is rather
constant, a proteome differs from cell to cell and constantly changes
through its biochemical interactions with the genome and the
environment.

| nteractome — whole set of molecular interactions in cells, in the context
of proteomics, it refers to protein-protein interaction network(PPI), or
protein network (PN).

Systems Biology - seeks to understand how biological systems function.
By studying the relationships and interactions between various parts of a
biological system (e.g. metabolic pathways, organelles, cells,
physiological systems, organisms etc.), it is hoped that eventually a
model of the whole system can be developed.

All an organism’s cells carry the same B = S
Genome, and it is Static. Genomes do (\] P B R
not describe function. They are a parts wh ene
list. ‘

Different cells express different proteins, ""‘-—-M_;_%-j
The type and quantity of this expression i--i-- i -

changes. KN plimtme

The Proteome is Dynamic. It is the total

of all proteins expressed by a particular i oo i
cell at a given fime, under specific
conditions.

A Proteome cannot be studied the way a Genome is sequenced,
There has to be a specific biologieal question behind an experiment.
The questions may be either very broad or strictly defined,

insi Ehl‘. review articles NATURE VO 422(13 MARCH 2003w narure com/nature

Mass spectrometry-based proteomics

Ruedi Aebersold" & Matthias Mannt

*Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 58103-8904, USA (e-mail: raebersold@systemsbiologyorg)
+ Center for Experimental Bioll “EBI), D of Bl y and Molecular Biology, University of Southern Denmark,
Camypusvej 35, DK-5230 Odense M, Denmark (e-mail: mann@bmb.sdu.dk)

Recent successes illustrate the role of mass spectrometry-based proteomics as an indispensable tool for
molecular and cellular biology and for the emerging field of systems biology. These include the study of
protein-protein interactions via affinity-based isolations on a small and proteome-wide scale, the mapping of
numerous organelles, the concurrent description of the malaria parasite genome and proteome, and the
generation of quantitative protein profiles from diverse species. The ability of mass spectrometry to identify
and, increasingly, to precisely guantify thousands of proteins from complex samples can be expected to
impact broadly on biology and medicine.

Note: HT Proteomics is restricted to those
species where a sequence database exists!

Generic Mass Spectrometry-based Proteomics
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Common M Ss Used in Proteomics Resear ch
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[ Differential Expression Proteomics
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MALDI-TOF/MS MASS MAPPING

PROTEIN IDENTIFICATION

F
DATA-DEPENDENT LC/MS/MS

DATABASE SEARCHES ‘
PROTEIN IDENTIFICATION

Two Dimensional Gel Electrophoresis

Isodectric locusing is performed on
precast gel sirips using commeercial
instruments. Many pH ranges are
avallable, Multiple strips can be run in
parallel.

An immobilized pH gradient Is created in
a polyacrylamide gel sirip by
incorporating a gradient of acidic and
baskc bulfering groups when the gel is
cast.

Resolution is determined by the slopeal
the pH gradient and the Meld strength.

Loading capacity depends on gel size and
thickness,

In 2D IEF/PAGE, the gel strip feom IEF
is loaded into a single large well.

| Figure from HioRad Product Lite ratare !




With the new genomic data bases of model species, such as Esherichia
coli, Saccharomyces cerevisae, mouse, and human, the sequences of
many/most proteins of biological interest will in principle be known, and the
problem of characterizing a protein primary structure will be reduced to
identifying it in the data base.

Within the past few years research groups have demonstrated how MS
can be used for identification of proteins in sequence data bases. One
approach is to cleave the protein with a sequence-specific proteolytic
enzyme, measure molecular weight values for the resulting peptide
mixture by mass spectrometry, and search a sequence data base for
proteins that should yield these values. Search algorithms can utilize
low resolution tandem mass spectra of selected peptides (<3 kDa) from the
protein degradation. Yates and coworkers compared the MS/MS sequence
data to the sequences predicted for each of the peptides that would be
generated from each protein in the data base. In the PEPTIDESEARCH
sequence tag approach of Mann and Wilm, a partial sequence of 2-3
amino acids is assigned from the fragment mass differences in the
MS/MS spectrum. This partial sequence and its mass distance from each
end of the peptide (based on the masses of the fragment and molecular
ions) are used for the data base search. Often, a single sequence tag
retrieved only the correct protein from the data base.

Tryptic Digest of ADH: Expected Peptides vs. Those Detected
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Detected in MALDI Mass Map
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Stable-isotope Protein Labelling for Proteomics

Metabolic stable- Isotope tagging Stable-isotope incorporation
isotope labelling by chemical reaction via enzyme reaction
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Protein labelling
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Organellar
Proteomics:
Combined
MS and
Imaging
Methods
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YFP-PSP1 actinomycin D YFP-PSP1 untreated

Other translation factors 3%6
Ribosomal proteins 13%

Others 12%

Novel 32%
Chaperones 6%

Dead box protein 5%
RNA-modifying enzymes
and related proteins 8%

and nucleic acid-
bLinding protein:

Nucleotide-binding

Summary of the functiens of various preteins identifled In specific tissues of M. tnmeatula,
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A Mammalian Organelle Map by
Protein Correlation Profiling

Leonard J. Foster," :Cavmen L. de Hoog,"* Yanling Zhang,** Yong Zhang,** Xiachui Xie,® Vamsi K. Mootha,*®

" Center for i ics (CEBI), D

of

Denmark, Campusvej 55, DK-5230 Odense M, Denmark

BG VBT 124, Canada

*Contact. mmann@biochem. mpg.de
DOl 10.1016/).cell.2006.03.022

SUMMARY

Protein localization to membrane-enclosed
organelles is a central feature of cellular organi-
zation. Using protein correlation profiling, we
have mapped 1,404 proteins to ten subcellular
locations in mouse liver, and these correspond
with enzymatic assays, marker protein profiles,
and confocal microscopy. These localizations
allowed assessment of the specificity in pub-
lished organellar protecomic inventories and
demonstrate multiple locations for 39% of all or-
ganellar proteins. Integration of proteomic and
genomic data enabled us to identify networks
of coexpressed genes, cis-regulatory motifs,
and putative transcriptional regulators involved
in organelle biogenesis. Our analysis ties bio-
chemistry, cell biology, and genomics into a

common framework for organelle analysis.

and Molecular Biology, University of Southen

2 Centre for Proteomics, Department of Biochemistry and Molecular Biology, University of British Golumbia, Vancouver,

*Department of Py d Signal Transduct Max-Planck Institute for Biochemistry, Martinsried, Germany D-82152
* Baijing Institute of Genomics, Chiness Academy of Sciences, Beijing 101300, China

“Broad Instituts of Hanard and MIT, Cambridge, MA 02139, USA

“Departmant of Systems Biology, Massachusetts General Hospital, Harvard Medical Schol, Boston, MA 02115, USA

microscopic examination of an organelle, certain proteins
or enzymea ativities that appear to localize exclusively 1o
that organelle idered markers,

that compartment.

Recently, protecmics (de Hoog and Mann, 2004) has
been applied to study organelle composition. The genetic
tractability of Saccharomyces cerevisiae has allowed
a large fraction of yeast ORFs to be tagged for localization
studies (Ross-Macdonald et al., 1999; Kumar et al., 2002;
Huh et al., 2003), but such an approach is more challeng-
ing in mammalian systems due, in part, to artifacts from
overexpression (Simpson et al., 2000). Mass spectrome-
try-based proteomics (Aebersold and Mann, 2003) is of-
ten employad to characterize the protein composition of
organelle-enriched fractions. Indeed, protein catalogs
are now available for virtually all cytoplasmic organelles
as well as most of the major nuclear ones {reviewed in
Yates et al., 2005). However, due to the high sensitivity
of mass spectrometers and the difficulties inherent in pu-
rifying organelles to homogensity, it has been challenging
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The Birth of Molecular Biology: DNA Structure

inside, linked together by hydrogen bonds. This
structure as described is rather ill-defined, and for
this reason we shall not comment
on it.

We wish to put forward a
radieally different structure for
the salt of deoxyribose nucleic
seid.  This structure hea two
helical chaing each coiled round
the same axis (see diagram). We
have made the nsual chemioal
assumptions, namely, that each
chain. consists of phosphate di-
ester -groups joining A-p-deoxy-
ribofurancse residues with 3'5'
linkages. The two chains (but
not their bases) arc relsted by a
dyad perpendicular to the fibre
axis, Both chains follow right-
handed helices, but owing to
the dyad the secquences of the
otoms in the two chains run
in opposite directions. Rach
chain  loosely resembles Fur-
berg’s* model No. 1; that is,
the hases are on the inside of
) ) the helix and the phosphates on
hie faure s, purdy  the outside. The configuration
Thbons symivlise the of the sugar and the satems
iwo phesphalo U pear it is close to Furberg's
ot ant the biw S0 Hard configuration’s th
wmmaﬁgﬂ‘m gugar being roughly pe
tre sxis  cular to the attached base.

Nature — 1953

\_',.?\

Nature — 2001

Dideoxy sequencing

(@ 0 o o by
P—P—P—0_ o Base

o

hain-terminating

CACH ) \ (didoxy) nuicleotides
HH
T cannot forma
phosphodiester band with
T next incoming dNTP.
TTAGAGGGGATAAGGGGGCA
GCGT
DNA polymerase ||| ===
+4dNTPs " Labeled
+ primer

4
ddATP
Acryiamide
T N T gel
TTAGACCCGATAAGCCGGGCA

ATTCGGGCGT

ONA
=———mLabeled

DNA polymerase |

+40NTPs + L

GATP  GdTTP  GdGTP ddGTP

POPOOODPPAPRO0OS DB

DNA ence
of ariginal strand

I rm

Automated dye-terminator sequencing

4-fluorescently labelled dideoxy dye terminators

ddATP
ddGTP pool and load in a single well or capillary
S;‘_E;PP - scan with laser + detector specific for each dye

- automated base calling
+ very long reads (~ 1000 bases)/run

THRNNAAT GCCAAT ACG GGGATGCTCT AGAGT COA:
0

GAGGGATGCAAGET TG AT A

CT A RRTABCTTGECG TARTCAT BBTCATABCTGTTTCCTG TG B ARAT TBTTATCCGOTCACART TGLACACARCAT

il Mwm ) WW J '

(bacterial artificial
chromosome)

Physical mapping and sequencing of the human genome

Genomic DNA

EBAC library

Qrganized
mapped large
clone contigs

BAC to be
sequenced
Shotgun ~p e s 3
T P o
clones Y el e R
Shotgun . . . ACCGTAAATGGGITGATCATGCTTAAR
sequence TCATCATCCTTAAACCCTCTCCATCCTACTE. . .
Assembly .. .RACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG. ..

Nature (2001) 409 p. 860-921




Jim Kent is a research scientist at UC Santa Cruz.

The human genome project was ultimately a race between Celera
Genomics and the public effort, with the final push being a bioinformatics
problem to put all of the sequence reads together into a draft genome
sequence. Jim Kent was a grad student at UCSC, who worked for weeks
developing the algorithm to put all of this together, beating Celera by 3
days to an assembled human genome sequence.

His efforts ensured that the human genome data remained in the public
domain and were not patented into private intellectual property.

Kent built a grid of cheap, commodity PC’s running the Linux operating
system and other Freeware to beat Celera's, what was thought of then as
the, world's most powerful civilian computer. In June 2000, thanks to the
work done by Kent and several others, the Human Genome Project was
able to publish its data in the Public Domain just hours ahead of Celera.

Kent went on to write BLAT and the UCSC Human Genome Browser to help
analyze important genome data, receiving his PhD in biology in 2002. Today
at UCSC he works primarily on web tools to help understand the human
genome. He helps maintain and upgrade the browser, and has worked on
recent projects such as comparative genomics and Parasol.

Finding genes in genomes
+ compare to EST or cDNA sequence
* look for open reading frames

* similarity to other genes and proteins

* Gene prediction algorithms (identifying
splice sites, coding sequence bias, etc.)

Genes can also be identified by sequencing cDNAs at random. The
sequenced cDNAs are called ESTs (expressed sequence tags)

gene

5!

aaaaaana-3/ mMRNA
cgttttcatgatcgggactaacTTTTT
tcatgatcgggactacgTTTTT
cgggactacgTTTTT > cDNA
atgcgggactacgTTTT

ggactacgTTTT J

The BIG QUESTION:

Why do we have so few genes?

Species Genome size Number of genes
Human (Homo sapiens) 2.9 billion base pairs 25,000 - 30,000
Fruit fly (Drosophila melanogaster) 120 million base pairs 13,600
Worm (Caenorhabditis elegans) 97 million base pairs 19,000
Budding yeast (Saccharomyces cerevisiae) 12 million base pairs 6,000
E. coli 4.1 million base pairs 4800




Genomics vs. Proteomics

With the completion of a rough draft of the human genome,

many researchers are looking at how genes and proteins
interact to form other proteins. A surprising finding of the
Human Genome Project is that there are far fewer protein-
coding genes in the human genome than proteins in the
human proteome (20,000 to 25,000 genes vs. about
1,000,000 proteins). The human body may contain more
than 2 million proteins, each having different functions.
The protein diversity is thought to be due to alternative
splicing and post-translational modification of proteins.
The discrepancy implies that protein diversity cannot be
fully characterized by gene expression analysis, thus
proteomics is useful for characterizing cells and tissues.

Functional genomics and proteomics

Identify genes and proteins encoded in the
genome (Gene finding)

Measure gene expression on a genome-wide
scale (microarrays)

Identify protein function
30-50% of the genes in a genome are of unknown function

Identify protein interactions, biochemical
pathways, gene interaction networks inside cells

Methods of making microarrays

DNA microarray (chip)

+ Robotic spotting
* using a printing tip
* using inkjets

« Synthesis of oligonucleotides
+ photolithography (Affymetrix)
+ using inkjets
« Digital Light Processor (DLP) or
Digital Micromirror Device (DMD)

Microarrays can be used to study gene expression, DNA-protein
interactions, mutations, protein-protein interactions, etc., all on a genome-
wide scale

Note: Thanks to Prof. Vishy lyer for many of these slides on microarrrays.
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Original microarray image

Colour representation of
differential gene expression
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e Large amounts of data can be displayed in this manner

» Gene expression data can be computationally analyzed and organized to
reveal patterns
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Data after hierarchical clustering
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Distinct types of diffuse large
B-cell lymphoma identified
by gene expression profiling

Ash A, Alizadeh'?, Michael B. Eisen™*", R, Eric Davis", Chi Ma’, Izidore S. Lossos*, Andreas Rosenwald", Jennifer C. Boldrick',
Hajeer Sabet’, Truc Tran’, Xin Yo', John I Powell, Liming Yang’, Gerald E. Marti®, Troy Moore”, James Hudson Jr", Lisheng Lu"",
David B. Lewis™, Robert Tibshirani'", Gavin Sherlock’, Wing €. Chan'”, Timothy C. Greiner”, Dennis D. Weisenhurger”,

James 0. Armilaqe”, Roger Warnke", Ronald Levy", Wyndham Wilson'®, Michael R. Grever', John C. Byrd", David Botstein’,
Patrick 0. Brown™™ & Lotis M. Staudt’
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11



Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin’s lympl , is clinically heterog :40%
of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease, We
proposed that this variability in natural history reflects unrecogni geneity in the tumours. Using DNA

i ys, we have asy ic characterization of gene expression in B-cell malignancies. Here we show that there
is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation
rate, host response and differentiation state of the tumour. We identified two y distinct forms of DLBCL which had gene
expression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germinal
‘centre B cells [germinal centre B-Tike DLBCL'); the second type expressed genes normally induced during in vitro activation of
peripheral blood B cells (‘activated B-like DLBCL'). Patients with germinal centre B-like DLBCL had a significantly better overal
survival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can thus
identify previously and clinically significant subtypes of cancer.

Despite the variety of clinical, morphological and molecular param-
cters used to classify human malignancies today, patients receiving
the same diagnosis can have markedly different clinical courses and
treatment responses. The history of cancer diagnosis has been
punctuated by reassortments and subdivisions of diagnostic cate-
gories. There is litle doubt thatour current taxonomy of cancer still
lumps together molecularly distinet diseases with distinet clinical
phenotypes. Molecular heterogeneity within individual cancer
diagnostic categories is already evident in the variable presence of
chromosomal translocations, deletions of tumour suppressor genes
and numerical chromosomal abnormalities. The classification of
human cancer is likely to become increasingly more informative
and clinically useful as more detailed molecular analyses of the
tumours are conducted.

The challenge of cancer diagnhosis

Diffuse large B-cell lymphoma is the
most common subtype of non-Hodgkin's
lymphoma. With current treatments, long-
term survival can be achieved in only 40%
of patients. There are no reliable indicators
— morphological, clinical,
immunohistochemical or genetic — that
can be used to recognize subclasses of
DLBCL and point to a differential
therapeutic approach to patients.

‘Lymphochip} a microarray carrying 18,000
clones of complementary DNA designed to
monitor genes involved in normal and]

What type of cancer? abnormallymphocyte development.

What is the underlying molecular basis?

What is the optimal treatment?

Box 1: Gene-expression profiling with microarrays

Imagine a 1-cm? chessboard.
Instead of 64 squares, it has
thousands, each containing
DNA from a specific gene. This
is 2 DNA microarray. The
activity of each gene on the
microarray can be compared
intwo populations of cells (A
and B).

When a gene is expressed
it makes a transcript, and the
whole population of these
products from a cell can be

tagged with a fluorescent dye
(say, red for the A cells, green
for the B cells). The microarray
is bathed in a mixture of the
red and green transcripts.
Those that originate from a
specific gene will bind to that
gene on the microarray, turning
red, green or somewhere in
between, depending on the
relative numbers of transcripts
inthe two cell types.

So the microarray provides

a snapshot of gene activity for
thousands of genes. Data
from many experiments can
be compared and genes that
have consistent patterns of
activity can be grouped or
clustered. In this way, genes
that characterize a particular
cell state, such as malignancy,
can be identified — so
providing new information
about the biology of the cell
state. Mark Patterson

Hierarchical clustering of gene expression data (as ratios).
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Nature (2000) 403: 503

12



Clustering of tumour samples from cancer
patients can be used for molecular
classification of cancers. This may be useful
for diagnosis and treatment

Subtypes of Diffuse Large B-Cell Lymphoma
(DLBCL)

GC B-like DLBCL Activated B-like DLBCL

Nature (2000) 403: 503
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Using “clustering analysis,” Alizadeh et al. could separate DLBCL into
two categories, which had marked differences in overall survival of the
patients concerned. The gene expression signatures of these subgroups
corresponded to distinct stages in the differentiation of B cells, the type
of lymphocyte that makes antibodies.
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Identifying a gene expression signature for breast cancer metastasis

a Nature (2002) 415: 530

[ 1
Nature (2002) 415 530
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Proteome survey reveals modularity of
the yeast cell machinery

Anne-Claude Gavin'*1, Patrick Aloy’*, Paola Grandi', Roland Krause'', Markus Boesche', Martina Marzioch',
Christina Rau', Lars Juhl Jensen®, Sonja Bastuck', Birgit Diimpelfeld', Angela Edel ! Marie-Anne Heurtier',
Verena Hoffman', Christian Hoefert', Karin Klein', Manuela Hudak', Anne-Marie Michon',

Malgorzata Schelder', Markus Schirle’, Marita Remor', Tatjana Rudi', Sean Hooper®, Andreas Bauer',

Tewis Bouwmeester', Georg Casari', Gerard Drewes', Gitte Neubauer', Jens M. Rick', Bemhard Kuster',

Peer Bork®, Robert B. Russell® & Glulio Superti-Furga'"

Pratein ! are key lar entities that i multiple gene products to perform cellular functions. Here

we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass
spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified
several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the
composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes,

of which 257 are novel, that di ially combine with iti attachment proteins or protein modules to enable a
diversification of potential functions. Support for this modular organization of the proteome comes from integration with
available data on exp ion, localization, function, i ¥ conservation, protein structure and binary interactions.

This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for
biological data integration and modelling.

Architecture and Modularity of Complexes
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Architecture and M odularity of Complexes
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Systems Biology Approach

Design new perturbation experiment to maximize
information gain about model

Set of perturbations/ | | Cell population executing Proteome-wide
conditions pathway of interest observation

+ Gene knockdown Quantitat pe—
) uantitation | pPTM raction
or overexpression gy ; !
+ Pharmacological profiles | profiis | | maps, etc.
stimulation
Determine
Model Mathematical Proteome-wide * ‘goodness of fit
parameters model of pathway prediction
abc .
| = Quantitation || PTM | Interaction
o f X profiles profiles | maps, etc.

3
\ Refine model parameters to improve fit
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