Counting statistics

1. Essential equations

All of what follows can be derived from two equations:

1) For M radioactive decay events (ie. M counts), the standard deviation is \sqrt{M}, in other words, the observed number of counts is:

$$
\begin{equation*}
M \pm \sqrt{M} \tag{1}
\end{equation*}
$$

2) For a sum (or a difference), the absolute errors add up in quadrature, ie

$$
\begin{equation*}
\operatorname{Err}^{2}(a \pm b)=\operatorname{Err}^{2}(a)+\operatorname{Err}^{2}(b) \tag{2}
\end{equation*}
$$

Applying these two principles to a sample for which one measures T counts (Total counts) and B counts for the background in the same time interval $\Delta t, N$ the net counts due to the sample is:
$N=T-B$
Then the standard deviation on N :

$$
\begin{equation*}
E r r^{2} N=E r r^{2} T+E r r^{2} B=T+B \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Err}(N)=\sqrt{T+B} \tag{5}
\end{equation*}
$$

or expressed as relative error (in three different ways)

$$
\begin{equation*}
\% \operatorname{err}(N)=\frac{\operatorname{Err}(N)}{N} \times 100=\frac{\sqrt{T+B}}{T-B} \times 100=\frac{\sqrt{N+2 B}}{N} \times 100=\sqrt{\frac{(S+1)}{B(S-1)^{2}}} \times 100 \tag{6a}
\end{equation*}
$$

where $S=\frac{T}{B}$
Note that Eqs. (5) and (6) give the value of one standard deviation, or 67% confidence level interval. In many disciplines, the error reported is the 95% confidence level, which corresponds to two standard deviations. For this matter, it is this last quantity which is reported as \% error in the ouput of Liquid Scintillation Counters.
The quantity S in Eq. (6a) and (6b) is related to the so-called signal-to-noise ratio; it describes by how much the sample count "sticks out" of the noise (the background), If $S=1($ ie., $T=B)$, there is no signal. If $S \gg 1(T \gg B)$, there is plenty of signal and life is easy. A problem arises when $S>1$ while $S \approx 1$. In this case, given that there are experimental uncertainties attached to the values of T, B and consequently of S, one may be faced with the question: is really $S>1$ and if so, by how much? In other words, does my sample contain significant activity?

2. Meaning of the two standard deviations (or 95\% confidence level).

Reporting an experimental result with its 95% conf. level assumes that the particular measurement obeys a normal distribution which in turn means that if the experiment were to be repeated, there is a 95% chance that the new result would agree with the previous result within the quoted interval (or to state it as pollsters like to do it: the result is considered accurate within the quoted interval 19 times out of 20).

Example of radioactive counting.

If one collects 100 counts in a given time interval, the 95% conf. level is $2 \times 100^{1 / 2}=20$. If one were to recount for the same duration the same sample over and over, 95% of the measurements (19 out of 20) would fall in the interval $80-120$ counts (after appropriate correction for decay if the half-life is "short").

3. For how long should I count?

For how long should I count to get the net cpm (net $\boldsymbol{c p m}=$ gross $c p m-$ blank $c p m)$ of my sample within a predetermined percent error?

This question arises mostly for low activity samples. It is totally related to the question: is this cpm significantly higher than my background, or is there really some activity in this particular sample? High activity samples (> 1000 cpm), since they stand out of the background, do not present a problem in general.
From Eq. (6b), $S=\frac{T}{B}=\frac{c p m_{\text {Gross }}}{c p m_{B k g}}$. Let $\%$ err be the desired percent error (95% conf.).
Then, the minimum counting time $\Delta t_{\min }$ to get net cpm of sample within \%err is obtained by rearranging Eq. (6a):

$$
\begin{equation*}
\Delta t_{\min }=\frac{1}{c p m_{B k g}} \frac{S+1}{\left(\frac{\% e r r}{100}\right)^{2}(S-1)^{2}} \tag{7}
\end{equation*}
$$

Example:

After a quick count (say, 2 min per sample), the following is obtained: $B k g=21 \mathrm{cpm}$ and Gross $=34 \mathrm{cpm}$ for the sample. Under these conditions, the percent error on these two pieces of data are respectively 31% and 24% (95% conf. level). This means that Bkg $=21 \pm 7 \mathrm{cpm}$ and Gross $=34 \pm 6 \mathrm{cpm}$. The net cpm is then:
Net $=$ Gross $-B k g=34-21=13 \mathrm{cpm}$ and the error on Net, using elementary error propagation calculation of Eq. (5),
$E r r_{\text {Net }}=\sqrt{E r r_{G r o s s}^{2}+E r r_{B k g}^{2}}=\sqrt{6^{2}+7^{2}}=9$
i.e., Net $=13 \pm 9 \mathrm{cpm}(69 \%$ error!), meaning that I can be 95% confident that Net is anywhere between 4 and 22 cpm .
If I want to know the net $c p m$ within 20%, using Eq. (7) above, the minimum counting time is calculated as $\approx 33 \mathrm{~min}(\approx 1 / 2$ hour!!). One can verify that for such a length of time, the results would be (using the same cpm values):
$B k g=21 \pm 1.6 \mathrm{cpm}$ (8% error) and Gross $=34 \pm 2.1 \mathrm{cpm}$ (6% error)
Then again:
Net $=$ Gross $-B k g=34-21=13 \mathrm{cpm}$ and

$$
E r r_{N e t}=\sqrt{E r r_{G r o s s}^{2}+E r r_{B k g}^{2}}=\sqrt{2.1^{2}+1.6^{2}}=2.6
$$

i.e., Net $=13.0 \pm 2.6 \mathrm{cpm}(20 \%$ error!), Now I can say with a 95% confidence level that my Net is between 10.4 and 15.6 cpm .

4. For a given counting time duration, how low a cpm can I measure with a given percent error?

For example. I routinely count my samples for two minutes; what is the lowest net cpm I can trust accepting a 20% error on this value.
This is called sometimes the minimum detectable activity (MDA), for a given counting duration and a given expected error.
The formula to use is a rearrangement of equation (7):

$$
\begin{equation*}
c p m_{\text {Net }}^{(\text {min })} \equiv M D A=\frac{1}{2 \times \Delta t \times\left(\frac{\% e r r}{100}\right)^{2}}\left(1+\sqrt{1+8 \times \Delta t \times c p m_{B k g} \times\left(\frac{\% e r r}{100}\right)^{2}}\right) \tag{8}
\end{equation*}
$$

where Δt is the counting time duration in minutes, and \%err the desired percent error.

Example:

I count my swipe test samples for 1 min . To decide whether some surface contamination is present I must be able to detect reliably ($\pm 20 \%$) 100 cpm . Is a 1 min count sufficient? One must determine the Bkg cpm, then use formula (8) above with $\Delta t=1 \mathrm{~min}$ and \%err $=20$. Let set $B k g=20 \mathrm{cpm}$ (typical value). One gets $M D A=130 \mathrm{cpm}$, a bit on the tight side. 1.5 min counting duration would be ideal.

