Review Summary – CH370 / 387D - Exam 2

Review of Nucleic Acids: Structures / Folding

Know N Bases; Primary & Secondary structure: double helix by Watson & Crick -1953

Nucleotide pairings: Watson-Crick

Conformations of nucleosides - syn / anti; Sugar pucker: endo or exo

Stabilization (destabilization) Hydrogen Bonding / Electrostatics / Stacking

Denatured DNA: Heat denaturation of DNA is called "melting," Tm / hypochromism.

Radioactivity and Counting

Radioactive decay processes (α / β + / β - / E.C.); Radioactivity rays (γ -rays)

Half life: $A = Ao \exp(-kt)$ where $k = \ln 2/\text{half-life}$

Measurement of Radioactivity: Geiger Counter / Film / PhosphorImagers / LSC Liquid Scintillation Counting: Excited solvent / 1° "fluor" / 2° "fluor" / PM

Electrophoresis – transport of charged particle in an electric field.

Theory: $F_{tot} = qE - fv = ma = m(dv/dt) = 0$; v = (qE/f)

f =6πηR for spheres; η = Viscosity ~ 0.01g/(cm-sec)

Ferguson Plots: electrophoretic mobility reflects both charge and size/shape

Methods: slab / tube / seq. gels / (native; denatured) / Disc. Gel / PAGE / PFGE / IEF / CE

SDS-PAGE (subunit MW) / buffer system / stains; IEF gels / 2D-PAGE

Centrifugation

Theory: $F_{tot} = m_{eff}\omega^2 r - fv = m\omega^2 r(1 - v'\rho) - fv = ma = m(dv/dt) = 0$; (v' is "v bar")

Preparative Methods: RCF / Rotors / Density Gradient: Zonal vs. Isopycnic Methods

Analytical Methods / Modern Analytical Ultracentrifuge

Optics: Schlieren ($\mathbf{a} = aK(dc/dx)$; Interference ($\mathbf{DJ} = (aK\mathbf{Dc})/\lambda$); Abspt. optics (A ~ c)

Sedimentation Velocity: $s = v/\omega^2 r = (m(1 - v'\rho)/f); \rightarrow plot (\ln r) \text{ vs. } t \rightarrow \text{slope} = \text{sw}^2$

Sed, Vel. plus Diffusion: $\mathbf{D} = (\mathbf{kT}/f) = (\mathbf{RT}/N^o f)$; $\rightarrow \mathbf{s} = \mathbf{MD}(\mathbf{1} - \mathbf{n'r})/\mathbf{RT}$

Sedimentation Equil.: $lnc_r - lnc_{rm} = [M\mathbf{w}^2(1 - \mathbf{n}^2\mathbf{r})/(2RT)](r^2 - r_m^2) \rightarrow plot ln c vs. r^2$

CD

Terms: CD / ORD / Plane polarized light vs. Circularly polarized light. etc

Special type of spectroscopy - meas. the difference in left and right handed absorbance:

A(l) - A(r) or essentially looking at difference in $e_L - e_R$

The instrument: measurements in far UV 170-240 nm (proteins); 170-300 nm (nucleic acids).

CD spectra can distinguish types of secondary structure (helix, sheet, r.coil / B-DNA, A-DNA) etc.

Applications: Folding / Secondary Structure / Denaturation / Thermal Stability

Light Scattering: "Static" and "Dynamic"

Wavelength >> particle size

Rayleigh (Static) Scattering – $i/I_o = N[8\pi^4\alpha^2/r^2\lambda^4](1 + \cos^2\theta)$ for unpolarized radiation.

Raleigh Ratio: $R_{\theta} = (i_{\theta} / I_{\theta})(r^2 / (1 + \cos^2 \theta)) = [2\pi^2 n_0^2 (dn/dC)^2 / \lambda^4 N_0^2] CM \text{ or } \mathbf{R_q} = KCM$

 $KC/R_{\theta} = 1/(M*P(\theta)) + 2 A_2C$; Mean Square Radius (Rg) 10 nm to 150 nm Experimental (Use of LS and RI); $LS = K_{LS}CM(dn/dC)^2$: $RI = K_{RI}C(dn/dC)$

or $LS/RI = M[(K_{LS}/K_{RI})(dn/dC)]$ or M = K'(LS)/(RI)

Polydispersity (Mw/Mn); If normalized, LS = RI for monomer but LS = 2*RI for dimer

Dynamic Light Scattering – Hydrodynamic (Stokes) Radius (R_h) 1.5 to 1000 nm

Wavelength << particle size

SAXS – use information from the interference of scattered light from different parts of molecule learn about **shape of the moleucle** → folding / binding (can view this on short time scales)

Mass Spectrometry

Mass spec − i) produces ions, ii) uses electric and magnetic fields to measure the mass ("weight") or mass / charge ratio of the charged particles.

Source: Electron impact (EI) / Chemical Ionization (CI) / Fast atom bombardment (FAB) Electrospray ionization (ESI) /Laser desorption (LD/MALDI)

Analyzer: ions separated according to mass. Quadrupole / Magnetic Sector / TOF

Detector which produces a signal from the separated ions.

Natural isotopic abundance (1.1% C-13, etc.) / "Resolution" of mass spec

Linked Systems: GC/MS; LC/MS; MS/MS

Names often reflect the "ion source" method then the "analyzer" method MALDI TOF / ESI TOF

Source of "ions" - Applications with Biomacromolecules –

- a) **Electrospray Ionization (ESI):** nondestructive / microdroplets
- b) Matrix-Assisted Laser Desorption-Ionization (MALDI) / TOF

******* (to be continued for Exam III)