Review Summary – CH370 / 387D - Exam 1

Amino Acids and Peptides

Know all 20 common amino acids – name / 3-letter abbrev. / 1-letter abbrev. Know approximate pKa's of titratable amino acids Charge properties of amino acids and peptides / pI Nature of the peptide bond / definition of Phi, Psi (ϕ / ψ) torsion angles

Protein Structure

Definitions of primary, secondary, tertiary and quaternary structures Common secondary structures / Phi, Psi (ϕ / ψ) torsion angles Ramachandran Plot (how defined, general features) Common terms used to describe protein structure – motifs / domains - examples

Protein Folding

Non-covalent Interactions Protein Folding – chaperones / models - thermo and approaches to predicting protein folds - use of energy potentials and simulations Denaturation / Renaturation – thermo and practice

Bioinformatics and Software

Major web resource sites – NCBI / EMBL / ExPASy / PDB BLAST – principles, uses and **definitions of key terms**, Substitution matrices (PAM / BLOSUM) Scores in sequence alignments / terms / interpretation

Protein Purification

Produce / Extract / Purify

Produce: rich tissue / expression system Extract: cell lysis – grinding / sonication / French Press / detergent Purify: Take advantages of differences in: Solubility / Charge / Size / Specificity Chromatograhy – ion exchange / specificity / IMAC / size exclusion Analysis: Follow purification using an assay for "activity" and SDS gels Purification Table

Spectroscopy

Interaction of Light with Matter (induce oscillating dipoles in matter)

a) Scattered – $(\sim 10^{-16} \text{ sec})$ b) Absorption - $(\sim 10^{-15} \text{ sec})$

Absorption Spectrum – "fingerprint"

Beer-Lambert Law: Absorbance (A); Intensity (I, I_o); Transmittance (T = I / I_o) A = log (I_o / I) = log (1/T) = $-\log(T)$

Extinction Coefficient – E (1%), ε_M = Molar extinction coeff.

A = O.D. = $\varepsilon \bullet c \bullet \ell$ also $\left[\left| E^{1\%} \bullet MW \right| = 10 \bullet \left| \varepsilon_M \right| \right]$

Fluorescence / Phosphorescence (uses of Fluroscence)

Fluorescence (~ 10^{-4} sec to 10^{-9} sec) / Phosphorescence (> 10^{-3} sec) Fluorescence (λ max / band shape / lifetime / anisotropy / energy transfer) FRET (Fluor. Res. Energy Transfer) Eff. = $1/[1 + (R/Ro)^6]$ – needs "spectral overlap"