Review for Exam II – Chem 370

1. Spectroscopy / Fluorescence

 $E = hv = hc/\lambda$ (different names depending on energy or wavelength: for λ in cm)

Interaction of Light with Matter (induce oscillating dipoles in matter)

a) Scattered – (~ 10^{-16} sec)

b) Absorption - (~ 10^{-15} sec) – due to "transition" from one energy level to another

Beer-Lambert Law: Absorbance (A); Intensity (I, I_0); Transmittance (T = I / I_0)

 $A = log (I_o / I) = log (1/T)$

Extinction Coefficient – E (1%), ε_{M} = Molar extinction coeff.

A = O.D. = $\varepsilon \bullet c \bullet l$ also $[E^{1\%} \bullet MW = 10 \bullet \varepsilon_M]$

 A_{280} ; E (1%) ~ 10 (or O.D. of 1 for 1 mg/mL)

Nucleic Acids: A_{260} ; E (1%) ~ 200 (or O.D. of 1 for 50 µg/mL)

Instrumentation

Proteins:

Light Source - Monochromator (filter, prism, grating) - Slit - Cuvette -Detector (PM tube) Fluorescence / Phosphorescence

Fluorescence (~ 10^{-4} sec to 10^{-9} sec) / Phosphorescence (> 10^{-3} sec)

Resonance Energy Transfer – needs "spectral overlap"

 $R = Ro[(1-\epsilon)/\epsilon]^{1/6}$ or FRET (Fluor. Res. Energy Transfer) Eff. = $1/[1 + (R/Ro)^6]$

2. Chromatography

"Column" chromatography - separate by absorptive property / collect fractions

- ion exchange chromatography (separate by charge / pH / pI)

- affinity chromatography (use ligand / His tag; IMAC)
- gel exclusion chromatography (zonal technique / size)

Gradient methods – role of salt or pH gradients

3. Electrophoresis – transport of charged particle in an electric field.

Theory: $F_{tot} = qE - fv = ma = m(dv/dt) = 0$; v = (qE/f)

f = $6\pi\eta R$ for spheres; $\eta = Viscosity \sim 0.01g/(cm-sec)$

Ferguson Plots: electrophoretic mobility reflects both charge and size/shape

Methods: slab / tube / seq. gels / (native; denatured) / Disc. Gel / PAGE / PFGE / IEF / CE

a) PAGE – polyacrylamide gel electrophoresis; concentration and cross-linking

b) SDS-PAGE (subunit MW) / role of buffer system / use of stains

c) IEF gels / 2D-PAGE

4. Radioactivity and Counting

Types of radioactive decay processes ($\alpha / \beta + / \beta - / E.C.$); Radioactivity rays (γ -rays) Activity Units: Curies (Ci); 1 Ci = 3.7 x 10¹⁰ disintegrations per sec;

1 becquerel = 1 radioactive decay per second

Math: Half life: $A = Ao \exp(-kt)$ where $k = \ln 2/half$ -life

Measurement of Radioactivity

Geiger Counter – counts ions

Exposure: (Rad / Gray = 1J/kg) (Rem / Sievert)

5. Centrifugation

 $F_{tot} = ma = m(dv/dt) = m_{eff}\omega^2 r - fv = m\omega^2 r(1 - v'\rho) - fv = 0$ at steady state; (v' is "v bar") Preparative Methods: RCF / Rotors / Density Gradient: Zonal vs. Isopycnic Methods Analytical Methods / Modern Analytical Ultracentrifuge

a) Optics / Rotors

Schlieren optics ($\mathbf{a} = aK(dc/dx)$) **Interference optics** (**DJ** = (aK**D** $c)/\lambda$) Absorption optics (A ~ c) b) Sedimentation Velocity: $s = v/\omega^2 r \rightarrow plot$ (ln r) vs. $t \rightarrow slope = sw^2$ $s = v/\omega^2 r = (m\omega^2 r (1 - v'\rho)/f) / (\omega^2 r) \text{ or } s = M(1 - n'r)/N^o f$ s is a function of size and shape! s had units of sec $(1S = 10^{-13} \text{ sec})$ c) Sedimentation Velocity plus Diffusion Diffusion Coefficient $\mathbf{D} = (\mathbf{kT}/f) = (\mathbf{RT}/N^o f)$ $s = v/\omega^2 r = (m(1 - v'\rho)/f) \rightarrow s = MD(1 - n'r)/RT$ d) Sedimentation Equilibrium: Diffusion vs. Centrifugation Flow due to diffusion = - D (dc_r/dr) Net flow in centrifuge = $s\omega^2 rc_r - D (dc_r/dr) = 0$ at equilibrium $(1/c_r)(dc_r/dr) = Mw^2r(1 - n'r)/RT$ or at equilibrium $lnc_r - lnc_{rm} = [Mw^{\hat{2}}(1 - n'r)/(2RT)](r^2 - r_m^2) \rightarrow \text{plot } ln c \text{ vs. } r^2$ 6. Light Scattering: "Static" vs. "Dynamic" **Rayleigh (Static) Scattering** – scattering from N identical particles, each much smaller than λ $i/I_0 = N[8\pi^4\alpha^2 / r^2\lambda^4](1 + \cos^2\theta)$ for unpolarized radiation. Substituting α in terms of dn/dC (spec. refractive index increment) and noting that N is equal to $[C(g/mL)/M]N^{\circ}$. $i/I_o = [2\pi^2 n_o^2 (dn/dC)^2 / r^2 \lambda^4 N_o^2] CM(1 + \cos^2\theta).$ Intensity falls off with r^2 / Intensity decr. with incr. wavelength λ^4 **Intensity depends on scattering angle** Define Raleigh Ratio as $R_{\theta} = (i_{\theta} / I_{\theta})(r^2 / (1 + \cos^2 \theta))$ and thus $R_{\theta} = [2\pi^2 n_o^2 (dn/dC)^2 / \lambda^4 N_o^2] CM$ or $R_{q} = KCM$. KC/ $R_q = 1/M$ (ideal) or KC/ $R_q = 1/(M*P(q)) + 2 A_2C$ (real soln.) Mean Square Radius (Rg) 10 nm to 150 nm **Dynamic Light Scattering** – Measurement of Diffusion from fluctuations with time The movement of molecules is related to their **diffusion constants** or frictional coeff. Hydrodynamic (Stokes) Radius (R_h) 1.5 to 1000 nm $D = (RT)/(N_0 f)$ Experimental (Use 2-detector method / LS and RI) $LS = K_{LS}CM(dn/dC)^2$ Light Scattering: $RI = K_{RI}C(dn/dC)$ Refractive Index: $LS/RI = M[(K_{LS}/K_{RI})(dn/dC)]$ or M = K'(LS)/(RI)or **Polydispersity** (Mw/Mn); If normalized, LS = RI for monomer but LS = 2*RI for dimer Weight Average Molecular Weight $M_{w} = \Sigma N_{i} M_{i}^{2} / \Sigma N_{i} M_{i}$ 7. CD The instrument: Need to have an absorption band to have a CD spectrum. Typical measurements for proteins are in far UV 170-240 nm. CD – measures the difference in left and right handed absorbance A(I)- A(r). The CD is a

function of wavelength. CD spectra can distinguish different types of secondary structure (helix vs. sheet vs, random coil / B-DNA vs. A-DNA, etc.).

Applications: Folding / Secondary Structure / Denaturation / Thermal Stability