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Variablesthat influence crystal growth

Nature of macromolecule— Purity and concentration of macromolecule

Nature and concentration of precipitant

pH / Temperature / Pressure

Level of reducing agent or oxidant

Substrates, coenzymes, and ligands / Metal ions

Preparation and storage of macromolecule / Proteolysis and fragmentation

Age of macromolecule / Degree of denaturation

Vibration and sound

Volume of crystallization sample

Seeding

Amor phous precipitate

Buffers

Cleanliness

Organism or species from which the macromolecule was isolated

Gravity, gradients and convection




Common Compoundsused in Crystallization

Ammonium or sodium sulfate

Sodium or ammonium citrate

Sodium or ammonium acetate

Magnesium sulfate

Cetyltrimethyl ammonium salts

Polyethylene glycol 400, 1000, 4000, 6000, 15,000 (now also 2,000, 8,000, etc.)

Hampton Crystal Screen Solutions

—
Note :

A mini-screen can be set up from the most successful conditions. Those are indicated in the cohamn labeled Miniscreen.

s amnice list of

commonly used in

o ipretty pictures
o CRYSTOOL efficient random screen made for you here on the WEB.

Tube # SALT BUFFER Frecipitant Minisereen Tube #
1 [0.02M Calcium Chioride [0.1W Na Acetate pH 4.6 30% wiv - methyl-2,4-pentanediol Y 1
3 None None [0.4M KN Tarlrate tetrahydrate 2z
9 e VianE 04N Ammoniumn dinydrogen 5
M ethOdS fOI’ pI’Ote”] Cl’yS[anlzatlon 1 Nane 0.1 Tris-HCI pH 8.5 [2.0M Ammoniurm Sulfate ¥ 1
5 0.2M tri-gadiurn citrate 0.1M Na HEPES pHT.5 [30% wiv 2-methyl-2,4-pentanediol g
[ [0.2M Magnesium chioride 0. TW Tris-HCI pH 8.5 30% wiv PEG 4000 6
Batch crystallization (simply dump reagentstogether) 7 None 0.1 Na Cacodylate pHE 5 [1.4M Sodium acetate trinydrate 7
quuld-“quld dlffugon |n aCapI”a]’yIUbe 8 0.2M tri-sadium citrate 018 Na Cacodylate pHE & 30% wiv 2-propanol 8
! - . L ] 02w asetate [0.1W Na Citrate pH 6.6 30% wiv PEG 4000 Y 9
Vapor diffusion-the most successful method (hanging drop, sitting drop), 10 [oaw avetals [0.1M Na Acetats pH 4.6 30% wiv PEG 4000 Y 10
typically using a Limbro plate. Equilibration occurs between the liquid 1" Nane 0.1M Na Citrate pH 5.6 ;ﬂm"g”"‘“m dinydrogen 1
and vapor phase. 12 0.2 Magnesium chiaride 010 Ma HEPES pH 7.5 30% wiv 2-propanal 12
DiaJys's 13 0.2M tri-godium cirate 0.1 Trig-HCl pH 8.5 30% vy PEG 400 13
14 0.2M Calcium Chloride 0.1W Na HEPES pH 7.5 28% uv PEG 400 ¥ (besh 14
15 0.2m atetate 0.1W Na Cacodylate BH 6.5 30% wiv PEG 8000 15
6 None 0.1W Na HEPES pH 7.5 [1.5M Lithium sulfate monohydrate Y 16
17 [0°2 Lithiurn sulfate 0 1WTrs-HCI pH 8.5 30% wiv PEG 4000 Y (2nd besh 7
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From Protein Molecule to Protein Crystal
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The Fourteen Bravais Lattices

There are fourteen distinct space groups that a Bravais lattice can have. Thus, from
the point of view of symmetry, there are fourteen different kinds of Bravais
lattices. Amnguste Bravais (1811-1863) was the first to count the catecones
correctly.

Crystal Systems

Crystal System][Bravais Type(s)|[Extermal Mininum Symmetry Unit Cell Properties
Triclinc P Nons b, al be, ga,
Monoclinic |7, [Oone 2-fold wis, pasallel b (b unique) |[s, b, ¢, 90, be, 90
Orthorhomtic |[B,LF [Thres perpendicular 2-folds a b, c, 50, 90,90
Tetragonal  ||P.I [One 4-fold ais, parallsl ¢ 4 8,¢,90,00,50
Trigonal F.R One 3-fold wis 5 8¢ 00,00, 120
Heragonal P [One 6-fold ais 2 a,c,90,90,120
Cubic P.F,I [Four3-folds along space disgonal |[s, 5,5 90, 90,90

Synmetry cperstions 11,1346, 12,346, m

The 14 Bravais Lattices

Triclinic

1
Crystal groups Laue Class |[Patterson: Symmetry 7
Trickar [E] 1 P1 L8
Monoclinic |2, m, 24m 2m P2/m, C2fm [
Onhothombic [[222, mn2, mmm mmz Prosnn, Cana, Frumen, Tenamas) P Teuagoral | Ingonaiexagonal ¥ Trgonal R
Tetragonal |4, -4, 4im, 412, dman, -42m, dimanun]| i, Simowen][Pdiim, 14/m, Piimanm, fmamm) \ B :</
Triganal 3,3,3,3m 3m 3,-3m  |[P-3,R-3, P-3ml, P-3Im, R3m S i ;
Hezagonal |6, -6, S¥m, 622, Gman, -62m, Gfmanm| Sin, Simaen|Péém, Pé/mm=m A I
\ 9 [
; Pm3, Im-3, F-3m, Pm-3m, v Wk
Cubic 23, m3, 432, 43m, nim mdmdm | — F
Notes

® Laue class comesponds to symmetzy of reciprocl space (ﬁaﬁa:hnn pattem)

@ Patterson symmetry is Lave class plus
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X-ray tubes: the“sealed” tube

_~Focol spat viewed
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_—Anode
,/Se window (k)
W,

X-roys _~Tube window

— _~Focal spat viewed
—x" from end

s

“—Anode face

el

Figure 1.5. (a) Section along the axis of an X-ray tube. (b, Anode
with focal spot viewed from side. (c) Focal spot viewed
through tube window.

Origin of Non-characteristic X-rays

Bremsstrahlung X-rays

o In an X-ray tube the electrons emitted from the anode are
accelerated towards the metsl target cathode by an
accelerating voltage of typically 50 k¥, The high energy

o} g electrons interact with the atoms in the metal target.

@'f“ Sometimes the electron comes very close to a nucleus in

@ the target and is deviated by the electromagnetic
@ interaction. In this process, which is called bremsstrahlung
[5) (braking radiation), the electron looses much energy and a
) photon {X-ray) is emitted, The energy of the emitted
photon can take any value up to a maximum
corresponding to the energy of the incident electron.
The electron (much lighter than the
nucleus) cornes very close to the
nucleus and the electromaagnetic
interaction causes a devistion of the
trajectory where the electron looses
energy and an X-ray photon is
emitted,

Photon Photen
@

oo\




Origin of characteristic X-rays

Related Laureate
The Nobel Prize in
Physics 1917 - Charles

Characteristic X-ray Lines

The high energy electron can also cause an electron close
to the nucleus in a metal atom to be knocked out from its
place. This vacancy is filled by an electron further out from
the nucleus. The well defined difference in binding energy,
characteristic of the material, is emitted as a
monoenergetic photon. When detected this X-ray photon

‘:‘ gives rise to a characteristic X-ray line in the energy
spectrum. C. Barkla observed these lines in 1908-09 and
was given the 1917 Nobel Prize for this discovery. He also
made the first experiments suggesting that the X-rays are
electromagnetic waves.

Glover Barkla »

Characteristic X-rays arise from
electronic transitions K, ,K,,

kg K Ky, Ky,
Ka
Ke
I Mo
Cu
| | |
0.5 10 15
x (A

Figure 1.2. X-ray spectra with characteristic
peaks: MoKa, 50 Kv; CuKe, 35 Kv.
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Characteristic X-rays have defined A
Table 1.1. Target Materials and Associated Constants
Cr Fe Cu Mo

Z 24 26 29 42
oy, A 2.2896 1.9360 1.54035 0,70926
oy, 2.2935 1.9399 1.5443 0.71354
a*A 2.2909 1.9373 1.5418 0.71069
B, A 2.0848 1.7565 1.3922 0.63225
8, filt. vV, 0.4 milf Mn, 0.4 mil Ni, 0.6 mil Nb, 3 mils
e, filt. Ti Cr Co Y
Resolution, A 1.15 0.95 0.75 0.35
Critical potential, kV 5.99 7.11 8.98 20,0
Operating conditions, kV: 30-40 35-45 35-45 50-55

half- or full-wave- 10 10 20 20

rectified, mA

constant potential, mA 7 7 14 14

* & is the intensity-weighted average of a; and a; and is the figure usually used for the
wavelength when the two lines are not resolved.
T 1 mil = 0.001 inch = 0.025 mm.
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Another Source of “X-rays”

Synchrotron Radiation

¥-ray photons can also be created
under different conditions. When physicists were operating the first particle
accelerators, they discovered that electrons can produce photons without
colliding at all. This was possible because the magnetic field in the
accelerators was causing the electrons to move in large spirals around
magnetic field lines of force. This process is called synchrotron radiation.

In the cosmos particles such as electrons can be accelerated to high
energies— near the speed of light- by electric and magnetic fields. These high-
energy particles can produce synchrotron photons with wavelengths ranging
om radio up through X-ray and gamma-ray energies.

=

electron

magnetic field x-ray

Synchrotron Radiation: Electrons moving in magnetic field
radiate photons.

“X-ray” Sources. Beyond X-ray tubes

The hrilliance of a light souree is defined as the number of photons emdtted per second, per unit source size, per unit
space angle and for a bandwidth of 171000 of the photon energy

The Compatisos between various sourees of K-rays shows large differences in theit biilliance

Keray tubes:
Wilhelm Conrad Rintgen discoversd X-rays in 1895 whilst working with cathode-ray tubes. Using the principle of fast
electrons hitting a metallic target, a first substantial gain in brilliance was not obtained until the introduction of rotating anode
soneses (~1960)

Synchrotron Radiation Facilities:

The progeess of high energy physics, with the construction of powerful patticle accelerators gave birth to what we now call
First genesation synchiotron soutces (~1970). Using the deflection of high energy electrons by a magnetic field for the
production of ¥ rays proved so promising that a numiber of dedicated Second generation sources were buils (1930
Relying on the combination of needle thin electron beams and Insertion Devices, Third generation synchioteon souces

(~1993) are now emitting synchrotron Xoray beams that are  trilkion (101?‘) times more brilliant than those produced by Zray
tubes

Free Electron X ray Lasers:
Coupling electron and Xoray beams together, the Free Electron X-tay Lasers cusrently on the drawing boards could be the
next generation of Keray sougces. While they promise to achieve an increase in peak balliance by another factor of a teillion,
the first prototypes may he operational around the year 1010

Brilliance of the X-ray beams
{ photons /s/ mm’/ mrad?0.1% BW )

Diffraction limit

2eneration
sources

1" generation 0
sources

Yeray tubes

1900 1920 1940 1960 1980 2000
Year

How synchrotron light is produced?

Control
Experimental hutch .

Oplics

to study




APS - Advanced Photon Source

Argonne National Laboratory
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More About the Bragg Formula

¥-rays scattered from different layers of atoms can interfere with each
other. The interference depends on the wavelength of the X-ray and on the
distance between the atorn layers. An ®-ray with well-known wavelength can
be used to explore the structure of the crystal, For a well-known crystal, the
¥-ray properties can be examined.

Incident *._ ¥ Scattered
wave ; wave
Y e - ¥
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Crystal planes, in Nacl, K-ray scattering from three crystal planes, separated by the distance

ardinary salt. Gther planes
Sreisle patable . Far canstructive interference in a diraction 8 the path difference

ruzst be an even number of wavelengths,
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“If apictureisworth a thousand words, then a macromolecular
structureis pricelessto a physical biochemist.” — van Holde

« Light Photography
A ~ 400- 700 nm

« Electron Microscopy
A ~ 0.001-0.1nm
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Single Hole Scattering Experiment
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Single Hole Scattering Experiment
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Effect of Multiple “Scatterers
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Transforms / Reciprocal Space
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Kevin Cowtan's Book of Fourier

o] & ] .

This is a bool of pictorial 2-d Fourier Transforms These are particularly relevant to my own field of Xray
crystaliography, but should be ofinterest to anyone involved in signal processing o frequency domain caleulations

Contents:
http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html

Introduction

EBook of Crystallography

Duck Tales and missing data,

A little Animal Magic and cross phasing
A Tail of Two Cats and image restoration.
= Animal Liberation and free-sets

The Gallery. Other interesting pictures |

Other topics: nh e ‘

The Interactive Structure Factor Tutorial Learn about structure factors and maps i

Anintroduction to erystallographic Fourier transforms The mathematical linl between Scattering theory and Fourier theory.
An explanation of the convelution theorem
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Kevin Cowtan's Book of Fourier

hittp:iwww.ysbl.york.ac.uk/~cowtan/fourier/fourier.html

Hexs is our old fend; the Fousier Duck, end his

ousier trensform:

L

Al ere 1 a new Fuend, the Fousier Cat and his

&

Founer tzanafirm
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Kevin Cowtan's Book of Fourier

hittp:/iwww.ysblyork.acuk/~cowtan/fourier/fourier.html

Duck Transform Amplitudes + Cat Phases

e J

Cat Transform Amplitudes + Duck Phases

Kevin Cowtan's

Book of Fourier

http:/fwww.ysblLyork.ac.uk/~cowtan/fourier/fourier.html

4

a) Cat - Cat Transform (Amplitudes only)
b) Manx (tailless) Cat - Manx Transform

-

¢) Cat Amplitudes + Manx Phases
d) [ 2x(Cat Amplitudes) - Manx Amplitudes|
+ Manx Phases

X-Ray Crystallography

Quiz questions:
1. Crystal Growth — Materials / Methods
What isthe single most important factor that deter mines crystal growth?
What ar e the two most common pr ecipitating agents for growing protein crystals?

2. Crystal Lattices - Lattice Constants/ Space Groups/ Asymmetric Unit

Identify the unit cell, asymmetric unit and symmetry - * L -
-
present in the pattern shown. ¥ » » ]

3. X-ray Sources— Sealed Tube/ Rotation Anode/ Synchrotron - -
What isresponsible for “characteristic” X-rays? _'J ™ _.J » J. Y
What are the major advantages of using synchrotron radiation?

4. Theory of Diffraction —Bragg's Law / Reciprocal Space
When collecting an X-ray data set, what isbeing measured and how isthat data useful?




