X-Ray Crystallography
“If a pictureisworth athousand words, then a macromolecular
structureis pricelessto a physical biochemist.” —van Holde
Topics:
1. Protein Data Bank (PDB)

Data mining and Protein Structure Analysis Tools
2. Image Formation

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)
3. X-Ray Crystallography (after NMR)
a) Crystal Growth — Materials / Methods
b) Crystal Lattices- Lattice Constants/ Space Groups/ Asymmetric Unit
c) X-ray Sources— Sealed Tube/ Rotation Anode/ Synchrotron
d)Theory of Diffraction —Bragg's Law / Reciprocal Space

€) Data Collection — Methods/ Detectors/ Structure Factors

f) Structure Solution — Phase Problem: MIR/ MR/ MAD

| h) Refinement, Analysis and Presentation of Results
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Maore About the Bragg Formula

¥-rays scattered from different layers of atoms can interfere with each
other. The interference depends on the wavelength of the ®-ray and on the
distance between the atom layers, An ®-ray with well-known wavelength can
be used to explore the structure of the crystal. For a well-known crystal, the
¥-ray properties can be examined.
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Scattering from “many atoms’
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The structure factor for a reflection may be thought of as the vector sum of the x-ray scattering
contributions from many atoms.

Each of the j contributions may be represented as a vector in the complex plane, with amplitude fj and
phase phi;.
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Crystals. Scattering from “ planes’

Resultant scattering of resultant scattering!

Bragg Equation
nA= 2 d sin(0)

Q PQ+QR= A
=—> Scattering will only be“ observed” at discrete Bragg angles(6)

The spacings of the Bragg reflections = L attice Constants
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Figure 2.5. Three families of lattice "planes” in a two-dimensional
lattice.
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Cryslals are rapidly
cooled ( )
to near liquid nitrogen
temperature

Reduced thermal
vibrations

Increased resolution
Reduced disorder
Eliminated radiation
damage

No merging and scaling
errors
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Representation of the electron density of a one-dimensional "crystal" by a superposition of waves. The
crystal is formed by a periodic repetition of a diatomic molecule, as shown at the top of the right-hand
column. The component waves, each with proper phase and amplitude, are on the left. The curves on the
right show the successive superposition of the five waves on the left. (From Waser, 1968.)
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Representation of another one-dimensional crystal, this one containing a triatomic
molecule. Note that this crystal is built up from the same waves as the crystal of (a) ;
only the amplitudes and phases have been changed. (From Waser, 1968.)




Solving the Phase Problem

1. MIR: Multiplelsomorphous Replacement (Heavy Atom)
2. MR: Molecular Replacement

3. MAD: multiwavelength anomolous dispersion
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Effect of adding 1 “heavy” atom with lots of electrons!
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Multiple Isomorphous Replacement (MIR) method

Feu = Fp + Fy Fo = Fpy-Fy

Multiple Isomorphous Replacement (MIR) method
Fp = Fpy - Fy

FPH2




Solving the phase problem by “Molecular Replacement".

If an approximate model of the protein structure is known in
advance, approximate phases can be guessed, and the
unknown parts of the structure can be calculated in an iterative
procedure.

No heavy atom derivative required.

BUT - need starting model and orientation (rotation and
translation)

For example, molecular replacement can be used to determine
the structure of an complex with inhibitor bound to an enzyme
active site, if the structure of the enzyme itself is already
known. Also, MR is often used to solve the structures of
closely related proteins in a superfamily.

"Multiwavelength Anomolous Dispersion™
(MAD) methods

Additional information used in calculating phases can be obtained
if x-ray diffraction intensities can be measured at wavelengths
near the absorption edge of the heavy atom derivative.

A tunable x-ray source is required (provided by a synchrotron). In
a synchrotron, accelerated electrons traveling near the speed of
light emit intense x-rays.

a) often only a single heavy atom derivative is required to
solve a structure (selenomethionine).

b) it is possible to solve structure of higher molecular weight
molecules (such as the ribosome, at MW = 2,500,000).
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=The largest signal will come from choosing the wavelength with maximal f* (A, in
the figure above).

=The second wavelength is usually chosen to have maximal |f"| (A, in the figure
above). Note that (1 and 2) are very close together, requiring great precision in
setting up the apparatus which controls wavelength during data collection.

=Additional wavelengths (3 and 4) are chosen at points remote from the absorption
edge. The available signal increasing slowly as the distance from the first two
wavelengths increases. However the diffraction conditions (crystal absorption and
diffracting power, diffraction geometry, etc) become more disparate as the
distance increases. The choice usually comes down to the practical limitations
imposed by the particular beamline apparatus being used. Typically A; and A, are
between 100eV and 1000eV from the absorption edge.
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Energy Refinement
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Crystal Structure of M. tibercufosis Alarine Racemasc

Table 1: Data Colection and Processng Statistes for the MAD
anc Matwve Data Sets of Alryg,

MAD |1 MAD2 MAD3 MAD4 native

AR 09788 09790 0.9562 09809 09160
resolution (A) 93 150
mosaicily 050 065

no. of reflections 432376 H674H 431524 336135 779600
observed > lo

Final Refinement Statistics for Alry at 1.9 A Resolution

no. of unique 35817 37506 36020 36242 R7592
reflections = la
] 6.9 6.4 5.1 ¥ 5.0 (67.2)
completeness (20)  01.8 958 Q2.1 921 OO I956)
() 03 345 416 509 34.512.6)
# Ruerye = LMot = Tl Eling |- Table 2
Biochemisary W05, 44, 1471~ 51 1471

The 1.9 A Crystal Structure of Alanine Racemase from Mycobacterinm tuberculosis
Contains a Conserved Fatryway into the Active Site™*

Pizrre LeMagueres.f el J. Benedik ! James M. Briggs

R factor® (%)
Riee (%0) (for 1747 reflections)
average B factor (A%)"

main chain

side chain

PLP

waters
rms deviations
bond lengths (A)
bond angles (degy
no. of reflections 20
no. of residues
no. of protein atoms
no. of PLP atoms
no. of water molecules

“ Refactor = X|Fape = Feie E|Ful.

All isotropic model.
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Kevin Cowtan's Book of Fourier
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This is a book of pictotial 2-d Fourier Transforms. These are particulatly relevant to my own field of X-ray
crystaliography, but should be of interest to anyone involved in signal processing or frequency domain calculations
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Kevin Cowtan's Book of Fourier
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. ¢) Cat Amplitudes + Manx Phases
a) Cat - Cat Transform (Amplitudes only) g )\ (Ca¢ Amplitudes) - Manx Amplitudes]
b) Manx (tailless) Cat - Manx Transform + Manx Phases
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Examples of Difference Fouriers

MIF - 1.5A 2Fo-Fe

~ X-Ray Crystallography
Quiz questions:
1. Crystal Growth — Materials / Methods
What isthe single most important factor that determines crystal growth?
What are the two most common pr ecipitating agents for growing protein crystals?

2. Crystal Lattices - Lattice Constants/ Space Groups/ Asymmetric Unit
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Identify the unit cell, asymmetric unit and symmetry ( .{ * *
L] » ]
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3. X-ray Sources— Sealed Tube/ Rotation Anode/ Synchrotron » .
What isresponsible for “characteristic” X-rays? J . —J - —J'
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What are the major advantages of using synchrotron radiation?
4. Theory of Diffraction —Bragg's Law / Reciprocal Space
When collecting an X-ray data set, what isbeing measured and how isthat data useful?
5. Phasing and Refinement
Identify the meaning of theterms: MIR, MR, MAD, Difference Map, Simulated Annealing




