

X-Ray Crystallography

"If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

Topics:

1. Protein Data Bank (PDB)

Data mining and Protein Structure Analysis Tools

2. Image Formation

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

3. X-Ray Crystallography (after NMR)

a) Crystal Growth - Materials / Methods

b) Crystal Lattices - Lattice Constants / Space Groups / Asymmetric Unit

c) X-ray Sources - Sealed Tube / Rotation Anode / Synchrotron

d)Theory of Diffraction - Bragg's Law / Reciprocal Space

f) Structure Solution - Phase Problem: MIR / MR / MAD

h) Refinement, Analysis and Presentation of Results

i) Use of Difference Fouriers

<text><section-header><section-header>

Advanced Methods in Modern Biomolecular Crystallography

Cryo-cooling efficiently improves data quality

Crystals are rapidly cooled (NOT FROZEN) to near liquid nitrogen temperature Reduced thermal vibrations Increased resolution Reduced disorder Eliminated radiation damage No merging and scaling errors

EN)

X-Ray Crystallography "If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde Topics: 1. Protein Data Bank (PDB) Data mining and Protein Structure Analysis Tools 2. Image Formation Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR) 3. X-Ray Crystallography (after NMR) a) Crystal Growth - Materials / Methods b) Crystal Lattices - Lattice Constants / Space Groups / Asymmetric Unit c) X-ray Sources - Sealed Tube / Rotation Anode / Synchrotron d)Theory of Diffraction - Bragg's Law / Reciprocal Space e) Data Collection - Methods / Detectors / Structure Factors h) Refinement, Analysis and Presentation of Results i) Use of Difference Fouriers

Solving the Phase Problem

- 1. MIR: Multiple Isomorphous Replacement (Heavy Atom)
- 2. MR: Molecular Replacement
- Molecular Modeling (predicting starting structure from sequence alone)

Solving the phase problem by "Molecular Replacement".

If an approximate model of the protein structure is known in advance, approximate phases can be guessed, and the unknown parts of the structure can be calculated in an iterative procedure.

No heavy atom derivative required.

BUT – need starting model and orientation (rotation and translation)

For example, molecular replacement can be used to determine the structure of an complex with inhibitor bound to an enzyme active site, if the structure of the enzyme itself is already known. Also, MR is often used to solve the structures of closely related proteins in a superfamily.

"Multiwavelength Anomolous Dispersion"

(MAD) methods

Additional information used in calculating phases can be obtained if x-ray diffraction intensities can be measured at wavelengths near the absorption edge of the heavy atom derivative.

A tunable x-ray source is required (provided by a synchrotron). In a synchrotron, accelerated electrons traveling near the speed of light emit intense x-rays.

a) often only a single heavy atom derivative is required to solve a structure (selenomethionine).

b) it is possible to solve structure of higher molecular weight molecules (such as the ribosome, at MW = 2,500,000).

-The largest signal will come from choosing the wavelength with maximal f" $(?_1 \mbox{ in the figure above}).$

•The second wavelength is usually chosen to have maximal $|f^{\circ}|$ (2 in the figure above). Note that (1 and 2) are very close together, requiring great precision in setting up the apparatus which controls wavelength during data collection.

•Additional wavelengths (3 and 4) are chosen at points remote from the absorption edge. The available signal increasing slowly as the distance from the first two wavelengths increases. However the diffraction conditions (crystal absorption and diffracting power, diffraction geometry, etc) become more disparate as the distance increases. The choice usually comes down to the practical limitations imposed by the particular beamline apparatus being used. Typically ?₃ and ?₄ are between 100eV and 1000eV from the absorption edge.

X-Ray Crystallography "If a picture is worth a thousand words, then a macromolecular structure is priceless to a physical biochemist." – van Holde

Topics:

1. Protein Data Bank (PDB)

Data mining and Protein Structure Analysis Tools

2. Image Formation

Resolution / Wavelength (Amplitude, Phase) / Light Microscopy / EM / X-ray / (NMR)

3. X-Ray Crystallography (after NMR)

a) Crystal Growth - Materials / Methods

b) Crystal Lattices - Lattice Constants / Space Groups / Asymmetric Unit

c) X-ray Sources - Sealed Tube / Rotation Anode / Synchrotron

d)Theory of Diffraction - Bragg's Law / Reciprocal Space

e) Data Collection – Methods / Detectors / Structure Factors

f) Structure Solution - Phase Problem: MIR / MR / MAD

Least-Squares Refinement

$$\begin{split} \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_1} \right)^2 \Delta p_1 + \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_1} \frac{\partial [kF_{e,r}]}{\partial p_2} \Delta p_2 + \cdots \\ &+ \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_1} \frac{\partial [kF_{e,r}]}{\partial p_n} \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_1} \\ \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_2} \frac{\partial [kF_{e,r}]}{\partial p_1} \Delta p_1 + \sum_{r=1}^{m} \left(\frac{\partial [kF_{e,r}]}{\partial p_2} \right)^2 \Delta p_2 + \cdots \\ &+ \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_2} \frac{\partial [kF_{e,r}]}{\partial p_2} \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_2} \\ & \vdots \\ \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_n} \frac{\partial [kF_{e,r}]}{\partial p_1} \Delta p_1 + \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_n} \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_2} \\ & \vdots \\ & \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_n} \frac{\partial [kF_{e,r}]}{\partial p_1} \Delta p_1 + \sum_{r=1}^{m} w_r \frac{\partial [kF_{e,r}]}{\partial p_n} \frac{\partial [kF_{e,r}]}{\partial p_2} \Delta p_2 + \cdots \\ &+ \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_n} \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_n} \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_n} \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \Delta F_r \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right) \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right) \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right) \frac{\partial [kF_{e,r}]}{\partial p_n} \\ & = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)^2 \Delta p_n = \sum_{r=1}^{m} w_r \left(\frac{\partial [kF_{e,r}]}{\partial p_n} \right)$$

Table 1: Data Col and Native Data S	lection an ata of Alt	d Process an	ing Statio	tics for th	e MAD		
	MAD I	MAD 2	MAD 3	MAD 4	nativy		
(A) resolution (A)	0.9788	0.9790	0.9562	0.9809	0.9160		
a), of atlections observed > 1.0	432376	446744	431524	336135	771660		
no, of unique reflections = lar	35817	37506	36620	36242	67992		
$R_{migs}^{+}(2i)$	6.9	6.4	5.1	3.7	6.0 (67.2)		
(Ea)	30.3	34.3	92.1 41.6	50.9	34.5 (2.6)		
And in the local division of the local divis		-					
$^{\circ}R_{augs} = \sum l_{ch}$	$-I_{eg} \Sigma$	y _{eq} l.			Table	2 Final Refinement Statistics for Ale	nt ≠ 1.9 Å Re
$R_{acqs} = \sum I_{cb} $	- 1 _{eg} 2	Vagl			Table	2: Final Refinement Statistics for Ale R factor ⁴ (%) R _{bat} (%) (for 1747 reflections) R _{bat} (%)	ant at 1.9 A Res 20.4 25.4
$k_{augs} = \sum l_{ch} $	- Leg S	Varyli 100 (100, 11)	er: 140.		Table 60	 Final Refinement Statistics for Ale R factor^a (%) R_{ba}(%) (for 1747 reflections) avange B factor (Å²^b main chain 	an at 1.9 Å Res 20.4 25.4 25.5
• R _{mage} = ∑jJ _{ch}	and the set of the set	Margh 1111 (100, 11.) 1111 (Rectin	ette sans.	wheterie	Table	 Final Referencest Statistics for Ale R factor? (%) Resp (%) (for 1747 reflections) storage B factor (Å²f⁴) runs ohan side chain 	uni at 1.9 A Res 20.4 25.4 25.5 31.5
* K _{mape} = ∑H _{ab} The 1.9 Å Crystal Sea Contain	n − I _{ang} 1∑ Burke thate of Ala 13 Conserve	Margh 1000 300, 45 7 1014 Racine of Externa	atto sao not from M into the As	www.com	Table un e subercolom	 Final References Statistics for Ale R factors (%) Res (%) (5x) 1747 reflections) serving B factors (A2P sink chain sink chain PLP waters 	an at 1.9 Å Res 20.4 25.4 25.5 31.5 21.9 25.4 21.9 25.4
*R _{ange} = <u>S</u> H _{ab} for 1.9 Å Crystal Sera Contain Pere (<i>physics</i>) Inde	n = L _{ang} (1) Burley thats of Allar 1.3 Conserve 9.3n ² Juny The	Margh min 300, 41 (d Entrywy min Cost	itte case and from M julio the As treat, Patched	icolasteria tira Site ¹	Table set a subcrashim no it tage?	 Final Refinement Statistics for Ale R factors (%) R_{bal}(%) (for 1747 reflections) everage R factor (Å²/² such claim side chain PLP waters rus deviations 	an at 1.9 Å Res 20.4 25.4 25.5 31.5 21.9 32.4
* R _{ange} — ΣiLde The 1.9 Å Crystal Ster Contain Part (Physics) Stoke	n = L _{ang} (1) Burley charts of Allar to Conserver q.3m ² leng the famile to	Margh non 300, 41 (niter Racent of Entryway name Content in Content	itte van nic firme Af jako far Az teolof teologi Azameter	voidactoria tina Site ¹¹ 1 itossiit, ¹ is	Table set a subcreation and to longer ¹	 Final Refinement Statistics for Ale R factor¹ (%) (for 1747 reflections) average B factor (Å)² sues clusts side clusts rRLP waters mas deviation bend lengths (Å) 	ant at 1.9 Å Res 20.4 25.4 25.5 31.5 31.9 32.4 0.000
* K _{merge} — <u>></u>]K _{sh} he 1.9 A Crystal Sira Cristaip Pare (<i>physics</i>) finds ^{(hergenth} Sira ^{(hergenth} Sira ^{(hergenth Sira ^{(hergenth} Sira ^{(hergenth Sira ^{(hergenth Sira ^{(hergenth} Sira ^{(hergenth} Sira ^{(hergenth} Sira ^{(hergenth} Sira ^{(hergenth Sira ^{(hergenth} Sira ^{(hergenth Sira ^{(hergenth} Sira ^{(hergenth Sira ^(hergenth) S}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>	Burley Burley Chang of Alla 1.3 Conserve Statistics Interaction Interaction Interaction Interaction	Margh mar 200, 40 (mine Racent of Entryway having Orac (mine for the product of the product of	atto years and diverse Aff balan the Au factor of the Au factor of the Au factor of the Au factor of the Automation of the Automation of the Automation of the Automation	confusctoring they Sile ²¹ 1 Investig ¹ 20.001.20per toolse.2000.00 percent	Table (17) (17) (17) (17) (17) (17) (17) (17)	 Final References Statistics for Ale R factor² (%) (for 1747 reflections) average B factor² (%) solid choin PLP mode Automotive PLP mode Arapha (A) body apple (Ap) no. of conductons = 200 no. of conducton 	an at 1.9 A Res 29.4 25.4 25.5 21.9 32.4 6.000 1.9 5500 722

bs.	$\rho_{o}(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{o,hkl} e^{-2\pi i (hx+ky+lz)} + R$
Calc.	$\rho_{\rm c}(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{{\rm c},hkl} e^{-2\pi i (hx+ky+lz)} + R'$
pol	$(x, y, z) - \rho_c(x, y, z) = \frac{1}{V} \sum_k \sum_k \sum_l (F_o - F_c)_{bkl} e^{-2\pi i (hx+ky+lz)} + R - R^{2k}$
	$\rho_o - \rho_c = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} \Delta F_{hkl} e^{-2\pi i (hk + ky + l_l)}$

