Spectroscopy – Sample Problems

- 1. A solution has a %T of 60%. What is the absorbance?
- 2. What are the units on the molar extinction coefficient in $A = \varepsilon \mid C$? $E^{1\%}$?
- 3. Copper sulfate has a molar extinction coefficient of 20 L mol⁻¹ cm⁻¹ at 600nm. What is the concentration of a solution of copper sulfate that gives an absorbance of 1.00 for a 1.0 cm pathlength?
- 4. β -carotene has a molar extinction coefficient of 100,000 L mol⁻¹ cm⁻¹. What is the concentration of a solution of β -carotene that gives an absorbance of 1.00 for a 1.0 cm pathlength?
- 5. One mg of a protein is dissolved in 1.0 mL of buffer and its A_{280} is read as 0.90 (assume 1.0 cm pathlength).
 - a) What is the $E^{i\%}$ for this protein?
 - b) What is the molar extinction coefficient for this protein if its MW = 40,000?
- 6. A protein solution gives an A_{280} of 0.60 when one part of concentrated protein solution is added to 20 parts buffer (assume 1.0 cm pathlength). If the protein has an $E^{1\%} = 9.5$, what is the concentration of the **original protein solution** in mg/mL?
- 7. Consider an enzyme of 1000 amino acid residues (MW ~ 110,000) containing the listed average composition of 1.4% (14) Trp, 3.2% (32) Tyr, and 3.9% (39) Phe.
 - a) Given the molar extinction coefficients, ϵ (280 nm), for Trp (5.6x10³). Tyr (1.4x10³) and Phe (0.2x10³), **estimate** the theoretical molar extinction coefficient for this enzyme.
 - b) **Estimate** the E^{1%} value and absorbance for a 1 mg/mL solution and a 1.0 cm path?